Calcul infinitésimal Exemples

Trouver la tangente horizontale sin(2x)-2sin(x)
Étape 1
Déterminez la dérivée.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2.1.2
La dérivée de par rapport à est .
Étape 1.2.1.3
Remplacez toutes les occurrences de par .
Étape 1.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.4
Multipliez par .
Étape 1.2.5
Déplacez à gauche de .
Étape 1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2
La dérivée de par rapport à est .
Étape 2
Définissez la dérivée égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Utilisez l’identité d’angle double pour transformer en .
Étape 2.1.2
Appliquez la propriété distributive.
Étape 2.1.3
Multipliez par .
Étape 2.1.4
Multipliez par .
Étape 2.2
Factorisez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Factorisez à partir de .
Étape 2.2.1.2
Factorisez à partir de .
Étape 2.2.1.3
Factorisez à partir de .
Étape 2.2.1.4
Factorisez à partir de .
Étape 2.2.1.5
Factorisez à partir de .
Étape 2.2.2
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Factorisez par regroupement.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1.1
Remettez les termes dans l’ordre.
Étape 2.2.2.1.2
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1.2.1
Factorisez à partir de .
Étape 2.2.2.1.2.2
Réécrivez comme plus
Étape 2.2.2.1.2.3
Appliquez la propriété distributive.
Étape 2.2.2.1.2.4
Multipliez par .
Étape 2.2.2.1.3
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1.3.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 2.2.2.1.3.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.2.2.1.4
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 2.2.2.2
Supprimez les parenthèses inutiles.
Étape 2.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.4.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.2.1
Divisez chaque terme dans par .
Étape 2.4.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.2.2.1.1
Annulez le facteur commun.
Étape 2.4.2.2.2.1.2
Divisez par .
Étape 2.4.2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.2.3.1
Placez le signe moins devant la fraction.
Étape 2.4.2.3
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 2.4.2.4
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.4.1
La valeur exacte de est .
Étape 2.4.2.5
La fonction cosinus est négative dans les deuxième et troisième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le troisième quadrant.
Étape 2.4.2.6
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.6.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.4.2.6.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.6.2.1
Associez et .
Étape 2.4.2.6.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 2.4.2.6.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.6.3.1
Multipliez par .
Étape 2.4.2.6.3.2
Soustrayez de .
Étape 2.4.2.7
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.7.1
La période de la fonction peut être calculée en utilisant .
Étape 2.4.2.7.2
Remplacez par dans la formule pour la période.
Étape 2.4.2.7.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 2.4.2.7.4
Divisez par .
Étape 2.4.2.8
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
, pour tout entier
Étape 2.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.5.2.2
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 2.5.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.2.3.1
La valeur exacte de est .
Étape 2.5.2.4
La fonction cosinus est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 2.5.2.5
Soustrayez de .
Étape 2.5.2.6
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.2.6.1
La période de la fonction peut être calculée en utilisant .
Étape 2.5.2.6.2
Remplacez par dans la formule pour la période.
Étape 2.5.2.6.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 2.5.2.6.4
Divisez par .
Étape 2.5.2.7
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
, pour tout entier
Étape 2.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
, pour tout entier
Étape 2.7
Consolidez les réponses.
, pour tout entier
, pour tout entier
Étape 3
Résolvez la fonction d’origine sur .
Appuyez ici pour voir plus d’étapes...
Étape 3.1

Étape 3.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.1
Associez et .
Étape 3.2.1.1.2
Multipliez par .
Étape 3.2.1.2
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le sinus est négatif dans le troisième quadrant.
Étape 3.2.1.3
La valeur exacte de est .
Étape 3.2.1.4
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant.
Étape 3.2.1.5
La valeur exacte de est .
Étape 3.2.1.6
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.6.1
Factorisez à partir de .
Étape 3.2.1.6.2
Annulez le facteur commun.
Étape 3.2.1.6.3
Réécrivez l’expression.
Étape 3.2.1.7
Réécrivez comme .
Étape 3.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.2.3
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1
Associez et .
Étape 3.2.3.2
Associez les numérateurs sur le dénominateur commun.
Étape 3.2.4
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.4.1
Multipliez par .
Étape 3.2.4.2
Soustrayez de .
Étape 3.2.5
Placez le signe moins devant la fraction.
Étape 3.2.6
La réponse finale est .
Étape 4
La droite tangente horizontale sur la fonction est .
Étape 5
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :
Étape 6