Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Différenciez les deux côtés de l’équation.
Étape 2
Étape 2.1
Différenciez.
Étape 2.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2
Évaluez .
Étape 2.2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.1.3
Remplacez toutes les occurrences de par .
Étape 2.2.2
Réécrivez comme .
Étape 2.3
Remettez les termes dans l’ordre.
Étape 3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 5
Étape 5.1
Soustrayez des deux côtés de l’équation.
Étape 5.2
Divisez chaque terme dans par et simplifiez.
Étape 5.2.1
Divisez chaque terme dans par .
Étape 5.2.2
Simplifiez le côté gauche.
Étape 5.2.2.1
Annulez le facteur commun de .
Étape 5.2.2.1.1
Annulez le facteur commun.
Étape 5.2.2.1.2
Réécrivez l’expression.
Étape 5.2.2.2
Annulez le facteur commun de .
Étape 5.2.2.2.1
Annulez le facteur commun.
Étape 5.2.2.2.2
Divisez par .
Étape 5.2.3
Simplifiez le côté droit.
Étape 5.2.3.1
Annulez le facteur commun à et .
Étape 5.2.3.1.1
Factorisez à partir de .
Étape 5.2.3.1.2
Annulez les facteurs communs.
Étape 5.2.3.1.2.1
Factorisez à partir de .
Étape 5.2.3.1.2.2
Annulez le facteur commun.
Étape 5.2.3.1.2.3
Réécrivez l’expression.
Étape 5.2.3.2
Placez le signe moins devant la fraction.
Étape 6
Remplacez par.
Étape 7
Définissez le numérateur égal à zéro.
Étape 8
Étape 8.1
Simplifiez .
Étape 8.1.1
L’élévation de à toute puissance positive produit .
Étape 8.1.2
Additionnez et .
Étape 8.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 8.3
Simplifiez .
Étape 8.3.1
Réécrivez comme .
Étape 8.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 8.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 8.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 8.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 8.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 9
Déterminez les points où .
Étape 10