Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Différenciez.
Étape 1.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2
Évaluez .
Étape 1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2
Réécrivez comme .
Étape 1.1.2.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.4
Multipliez par .
Étape 1.1.3
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.1.4
Simplifiez
Étape 1.1.4.1
Associez des termes.
Étape 1.1.4.1.1
Associez et .
Étape 1.1.4.1.2
Placez le signe moins devant la fraction.
Étape 1.1.4.2
Remettez les termes dans l’ordre.
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Soustrayez des deux côtés de l’équation.
Étape 2.3
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Étape 2.3.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.3.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 2.4
Multiplier chaque terme dans par afin d’éliminer les fractions.
Étape 2.4.1
Multipliez chaque terme dans par .
Étape 2.4.2
Simplifiez le côté gauche.
Étape 2.4.2.1
Annulez le facteur commun de .
Étape 2.4.2.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 2.4.2.1.2
Annulez le facteur commun.
Étape 2.4.2.1.3
Réécrivez l’expression.
Étape 2.5
Résolvez l’équation.
Étape 2.5.1
Réécrivez l’équation comme .
Étape 2.5.2
Divisez chaque terme dans par et simplifiez.
Étape 2.5.2.1
Divisez chaque terme dans par .
Étape 2.5.2.2
Simplifiez le côté gauche.
Étape 2.5.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 2.5.2.2.2
Divisez par .
Étape 2.5.2.3
Simplifiez le côté droit.
Étape 2.5.2.3.1
Divisez par .
Étape 2.5.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.5.4
Simplifiez .
Étape 2.5.4.1
Réécrivez comme .
Étape 2.5.4.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.5.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.5.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.5.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.5.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3
Les valeurs qui rendent la dérivée égale à sont .
Étape 4
Étape 4.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4.2
Résolvez .
Étape 4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 4.2.2
Simplifiez .
Étape 4.2.2.1
Réécrivez comme .
Étape 4.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 4.2.2.3
Plus ou moins est .
Étape 5
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée ou indéfinie.
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Élevez à la puissance .
Étape 6.2.2
Écrivez comme une fraction avec un dénominateur commun.
Étape 6.2.3
Associez les numérateurs sur le dénominateur commun.
Étape 6.2.4
Additionnez et .
Étape 6.2.5
La réponse finale est .
Étape 6.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 7
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Étape 7.2.1
Simplifiez chaque terme.
Étape 7.2.1.1
Simplifiez le dénominateur.
Étape 7.2.1.1.1
Appliquez la règle de produit à .
Étape 7.2.1.1.2
Élevez à la puissance .
Étape 7.2.1.1.3
Appliquez la règle de produit à .
Étape 7.2.1.1.4
Élevez à la puissance .
Étape 7.2.1.1.5
Élevez à la puissance .
Étape 7.2.1.1.6
Multipliez par .
Étape 7.2.1.2
Multipliez le numérateur par la réciproque du dénominateur.
Étape 7.2.1.3
Annulez le facteur commun de .
Étape 7.2.1.3.1
Annulez le facteur commun.
Étape 7.2.1.3.2
Réécrivez l’expression.
Étape 7.2.1.4
Multipliez par .
Étape 7.2.2
Additionnez et .
Étape 7.2.3
La réponse finale est .
Étape 7.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 8
Étape 8.1
Remplacez la variable par dans l’expression.
Étape 8.2
Simplifiez le résultat.
Étape 8.2.1
Simplifiez chaque terme.
Étape 8.2.1.1
Simplifiez le dénominateur.
Étape 8.2.1.1.1
Appliquez la règle de produit à .
Étape 8.2.1.1.2
Élevez à la puissance .
Étape 8.2.1.1.3
Élevez à la puissance .
Étape 8.2.1.2
Multipliez le numérateur par la réciproque du dénominateur.
Étape 8.2.1.3
Annulez le facteur commun de .
Étape 8.2.1.3.1
Annulez le facteur commun.
Étape 8.2.1.3.2
Réécrivez l’expression.
Étape 8.2.1.4
Multipliez par .
Étape 8.2.2
Additionnez et .
Étape 8.2.3
La réponse finale est .
Étape 8.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 9
Étape 9.1
Remplacez la variable par dans l’expression.
Étape 9.2
Simplifiez le résultat.
Étape 9.2.1
Élevez à la puissance .
Étape 9.2.2
Simplifiez l’expression.
Étape 9.2.2.1
Écrivez comme une fraction avec un dénominateur commun.
Étape 9.2.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 9.2.2.3
Additionnez et .
Étape 9.2.3
La réponse finale est .
Étape 9.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 10
Indiquez les intervalles sur lesquels la fonction est croissante et décroissante.
Augmente sur :
Diminue sur :
Étape 11