Calcul infinitésimal Exemples

Trouver où il y a croissance et décroissance à l'aide des Dérivées f(x)=1/3x^3-3x^2+9x+20
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.3
Associez et .
Étape 1.1.2.4
Associez et .
Étape 1.1.2.5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.1
Annulez le facteur commun.
Étape 1.1.2.5.2
Divisez par .
Étape 1.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.3.3
Multipliez par .
Étape 1.1.4
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.4.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.4.3
Multipliez par .
Étape 1.1.5
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.5.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.5.2
Additionnez et .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Factorisez en utilisant la règle du carré parfait.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Réécrivez comme .
Étape 2.2.2
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 2.2.3
Réécrivez le polynôme.
Étape 2.2.4
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 2.3
Définissez le égal à .
Étape 2.4
Ajoutez aux deux côtés de l’équation.
Étape 3
Les valeurs qui rendent la dérivée égale à sont .
Étape 4
Après avoir trouvé le point qui rend la dérivée égale à ou indéfinie, l’intervalle pour vérifier où augmente et diminue est .
Étape 5
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Élevez à la puissance .
Étape 5.2.1.2
Multipliez par .
Étape 5.2.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
Soustrayez de .
Étape 5.2.2.2
Additionnez et .
Étape 5.2.3
La réponse finale est .
Étape 5.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 6
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1
Élevez à la puissance .
Étape 6.2.1.2
Multipliez par .
Étape 6.2.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1
Soustrayez de .
Étape 6.2.2.2
Additionnez et .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 7
Indiquez les intervalles sur lesquels la fonction est croissante et décroissante.
Augmente sur :
Étape 8