Calcul infinitésimal Exemples

Trouver où il y a croissance et décroissance à l'aide des Dérivées f(x) = square root of 4-x
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Utilisez pour réécrire comme .
Étape 1.1.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.3
Remplacez toutes les occurrences de par .
Étape 1.1.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.1.4
Associez et .
Étape 1.1.5
Associez les numérateurs sur le dénominateur commun.
Étape 1.1.6
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.6.1
Multipliez par .
Étape 1.1.6.2
Soustrayez de .
Étape 1.1.7
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.7.1
Placez le signe moins devant la fraction.
Étape 1.1.7.2
Associez et .
Étape 1.1.7.3
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 1.1.8
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.9
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.10
Additionnez et .
Étape 1.1.11
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.12
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.13
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.13.1
Multipliez par .
Étape 1.1.13.2
Associez et .
Étape 1.1.13.3
Placez le signe moins devant la fraction.
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Définissez le numérateur égal à zéro.
Étape 2.3
Comme , il n’y a aucune solution.
Aucune solution
Aucune solution
Étape 3
Le domaine du problème d’origine ne comprend aucune valeur de où la dérivée est ou indéfinie.
Aucun point critique n’a été trouvé
Étape 4
Déterminez où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Convertissez des expressions avec exposants fractionnaires en radicaux.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Appliquez la règle pour réécrire l’élévation à la puissance comme un radical.
Étape 4.1.2
Toute valeur élevée à est la base elle-même.
Étape 4.2
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Pour retirer le radical du côté gauche de l’équation, élevez au carré les deux côtés de l’équation.
Étape 4.3.2
Simplifiez chaque côté de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1
Utilisez pour réécrire comme .
Étape 4.3.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.2.1.1
Appliquez la règle de produit à .
Étape 4.3.2.2.1.2
Élevez à la puissance .
Étape 4.3.2.2.1.3
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.2.1.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.3.2.2.1.3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.2.1.3.2.1
Annulez le facteur commun.
Étape 4.3.2.2.1.3.2.2
Réécrivez l’expression.
Étape 4.3.2.2.1.4
Simplifiez
Étape 4.3.2.2.1.5
Appliquez la propriété distributive.
Étape 4.3.2.2.1.6
Multipliez.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.2.1.6.1
Multipliez par .
Étape 4.3.2.2.1.6.2
Multipliez par .
Étape 4.3.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.3.1
L’élévation de à toute puissance positive produit .
Étape 4.3.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.3.1
Soustrayez des deux côtés de l’équation.
Étape 4.3.3.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.3.2.1
Divisez chaque terme dans par .
Étape 4.3.3.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.3.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.3.2.2.1.1
Annulez le facteur commun.
Étape 4.3.3.2.2.1.2
Divisez par .
Étape 4.3.3.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.3.2.3.1
Divisez par .
Étape 4.4
Définissez le radicande dans inférieur à pour déterminer où l’expression est indéfinie.
Étape 4.5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.5.1
Soustrayez des deux côtés de l’inégalité.
Étape 4.5.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.5.2.1
Divisez chaque terme dans par . Lorsque vous multipliez ou divisez les deux côtés d’une inégalité par une valeur négative, inversez le sens du signe d’inégalité.
Étape 4.5.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.5.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 4.5.2.2.2
Divisez par .
Étape 4.5.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.5.2.3.1
Divisez par .
Étape 4.6
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 5
Après avoir trouvé le point qui rend la dérivée égale à ou indéfinie, l’intervalle pour vérifier où augmente et diminue est .
Étape 6
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1
Multipliez par .
Étape 6.2.1.2
Soustrayez de .
Étape 6.2.1.3
Un à n’importe quelle puissance est égal à un.
Étape 6.2.2
Multipliez par .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 7
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1
Multipliez par .
Étape 7.2.1.2
Soustrayez de .
Étape 7.2.1.3
Réécrivez comme .
Étape 7.2.1.4
Évaluez l’exposant.
Étape 7.2.1.5
Réécrivez comme .
Étape 7.2.2
Multipliez le numérateur et le dénominateur de par le conjugué de pour rendre le dénominateur réel.
Étape 7.2.3
Multipliez.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.3.1
Associez.
Étape 7.2.3.2
Multipliez par .
Étape 7.2.3.3
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.3.3.1
Ajoutez des parenthèses.
Étape 7.2.3.3.2
Élevez à la puissance .
Étape 7.2.3.3.3
Élevez à la puissance .
Étape 7.2.3.3.4
Utilisez la règle de puissance pour associer des exposants.
Étape 7.2.3.3.5
Additionnez et .
Étape 7.2.3.3.6
Réécrivez comme .
Étape 7.2.4
Multipliez par .
Étape 7.2.5
Placez le signe moins devant la fraction.
Étape 7.2.6
La réponse finale est .
Étape 7.3
Sur la dérivée est . Comme elle contient un nombre imaginaire, la fonction n’existe pas sur .
La fonction n’est pas réelle sur car est imaginaire
La fonction n’est pas réelle sur car est imaginaire
Étape 8
Indiquez les intervalles sur lesquels la fonction est croissante et décroissante.
Diminue sur :
Étape 9