Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Différenciez en utilisant la règle multiple constante.
Étape 1.1.1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.2
Réécrivez comme .
Étape 1.1.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.1.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.3
Remplacez toutes les occurrences de par .
Étape 1.1.3
Différenciez.
Étape 1.1.3.1
Multipliez par .
Étape 1.1.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.3.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.5
Simplifiez l’expression.
Étape 1.1.3.5.1
Additionnez et .
Étape 1.1.3.5.2
Multipliez par .
Étape 1.1.4
Simplifiez
Étape 1.1.4.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.1.4.2
Associez des termes.
Étape 1.1.4.2.1
Associez et .
Étape 1.1.4.2.2
Placez le signe moins devant la fraction.
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Définissez le numérateur égal à zéro.
Étape 2.3
Comme , il n’y a aucune solution.
Aucune solution
Aucune solution
Étape 3
Le domaine du problème d’origine ne comprend aucune valeur de où la dérivée est ou indéfinie.
Aucun point critique n’a été trouvé
Étape 4
Étape 4.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4.2
Résolvez .
Étape 4.2.1
Définissez le égal à .
Étape 4.2.2
Soustrayez des deux côtés de l’équation.
Étape 5
Après avoir trouvé le point qui rend la dérivée égale à ou indéfinie, l’intervalle pour vérifier où augmente et diminue est .
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Simplifiez le dénominateur.
Étape 6.2.1.1
Additionnez et .
Étape 6.2.1.2
Élevez à la puissance .
Étape 6.2.2
Simplifiez l’expression.
Étape 6.2.2.1
Divisez par .
Étape 6.2.2.2
Multipliez par .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 7
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Étape 7.2.1
Simplifiez le dénominateur.
Étape 7.2.1.1
Additionnez et .
Étape 7.2.1.2
Un à n’importe quelle puissance est égal à un.
Étape 7.2.2
Simplifiez l’expression.
Étape 7.2.2.1
Divisez par .
Étape 7.2.2.2
Multipliez par .
Étape 7.2.3
La réponse finale est .
Étape 7.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 8
Indiquez les intervalles sur lesquels la fonction est croissante et décroissante.
Diminue sur :
Étape 9