Calcul infinitésimal Exemples

Trouver les points d'inflexion 6x-12
Étape 1
Écrivez comme une fonction.
Étape 2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.2.3
Multipliez par .
Étape 2.1.3
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.3.2
Additionnez et .
Étape 2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3
La dérivée seconde de par rapport à est .
Étape 3
Définissez la dérivée seconde égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez la dérivée seconde égale à .
Étape 3.2
Comme , l’équation sera toujours vraie.
Toujours vrai
Toujours vrai
Étape 4
There are no inflection points in a straight line, .
Aucun point d’inflexion