Calcul infinitésimal Exemples

Déterminer la concavité f(x)=x+1/x
Étape 1
Find the values where the second derivative is equal to .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.2.1
Réécrivez comme .
Étape 1.1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.1.3
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.1.1.4
Remettez les termes dans l’ordre.
Étape 1.1.2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.2.1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 1.1.2.2.2
Réécrivez comme .
Étape 1.1.2.2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.2.3.3
Remplacez toutes les occurrences de par .
Étape 1.1.2.2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2.6
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.2.6.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.1.2.2.6.2
Multipliez par .
Étape 1.1.2.2.7
Multipliez par .
Étape 1.1.2.2.8
Élevez à la puissance .
Étape 1.1.2.2.9
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.2.2.10
Soustrayez de .
Étape 1.1.2.2.11
Multipliez par .
Étape 1.1.2.2.12
Multipliez par .
Étape 1.1.2.2.13
Additionnez et .
Étape 1.1.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.4.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.1.2.4.2
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.4.2.1
Associez et .
Étape 1.1.2.4.2.2
Additionnez et .
Étape 1.1.3
La dérivée seconde de par rapport à est .
Étape 1.2
Définissez la dérivée seconde égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Définissez la dérivée seconde égale à .
Étape 1.2.2
Définissez le numérateur égal à zéro.
Étape 1.2.3
Comme , il n’y a aucune solution.
Aucune solution
Aucune solution
Aucune solution
Étape 2
Déterminez le domaine de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 2.2
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 3
Créez des intervalles autour des valeurs où la dérivée seconde est nulle ou indéfinie.
Étape 4
Remplacez tout nombre du premier intervalle dans la dérivée seconde et évaluez afin de déterminer la concavité.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Remplacez la variable par dans l’expression.
Étape 4.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Réécrivez comme .
Étape 4.2.1.2
Factorisez à partir de .
Étape 4.2.1.3
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.3.1
Factorisez à partir de .
Étape 4.2.1.3.2
Annulez le facteur commun.
Étape 4.2.1.3.3
Réécrivez l’expression.
Étape 4.2.2
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Élevez à la puissance .
Étape 4.2.2.2
Placez le signe moins devant la fraction.
Étape 4.2.3
La réponse finale est .
Étape 4.3
Le graphe est concave vers le bas sur l’intervalle car est négatif.
Concave vers le bas sur car est négatif
Concave vers le bas sur car est négatif
Étape 5
Remplacez tout nombre du premier intervalle dans la dérivée seconde et évaluez afin de déterminer la concavité.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Factorisez à partir de .
Étape 5.2.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.2.1
Factorisez à partir de .
Étape 5.2.1.2.2
Annulez le facteur commun.
Étape 5.2.1.2.3
Réécrivez l’expression.
Étape 5.2.2
Élevez à la puissance .
Étape 5.2.3
La réponse finale est .
Étape 5.3
Le graphe est concave vers le haut sur l’intervalle car est positif.
Concave vers le haut sur car est positif
Concave vers le haut sur car est positif
Étape 6
Le graphe est concave vers le bas lorsque la dérivée seconde est négative et concave vers le haut lorsque la dérivée seconde est positive.
Concave vers le bas sur car est négatif
Concave vers le haut sur car est positif
Étape 7