Calcul infinitésimal Exemples

Utiliser la définition de la limite pour trouver la dérivée f(x)=2x^3
Étape 1
Étudiez la définition de la limite de la dérivée.
Étape 2
Déterminez les composants de la définition.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Évaluez la fonction sur .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Remplacez la variable par dans l’expression.
Étape 2.1.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Utilisez le théorème du binôme.
Étape 2.1.2.2
Appliquez la propriété distributive.
Étape 2.1.2.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.3.1
Multipliez par .
Étape 2.1.2.3.2
Multipliez par .
Étape 2.1.2.4
Supprimez les parenthèses.
Étape 2.1.2.5
La réponse finale est .
Étape 2.2
Remettez dans l’ordre.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Déplacez .
Étape 2.2.2
Déplacez .
Étape 2.2.3
Déplacez .
Étape 2.2.4
Déplacez .
Étape 2.2.5
Remettez dans l’ordre et .
Étape 2.3
Déterminez les composants de la définition.
Étape 3
Insérez les composants.
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Multipliez par .
Étape 4.1.2
Soustrayez de .
Étape 4.1.3
Additionnez et .
Étape 4.1.4
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.4.1
Factorisez à partir de .
Étape 4.1.4.2
Factorisez à partir de .
Étape 4.1.4.3
Factorisez à partir de .
Étape 4.1.4.4
Factorisez à partir de .
Étape 4.1.4.5
Factorisez à partir de .
Étape 4.2
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Annulez le facteur commun.
Étape 4.2.1.2
Divisez par .
Étape 4.2.2
Appliquez la propriété distributive.
Étape 4.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Multipliez par .
Étape 4.3.2
Multipliez par .
Étape 4.4
Déplacez .
Étape 4.5
Déplacez .
Étape 4.6
Remettez dans l’ordre et .
Étape 5
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 6
Évaluez la limite de qui est constante lorsque approche de .
Étape 7
Placez le terme hors de la limite car il constant par rapport à .
Étape 8
Placez le terme hors de la limite car il constant par rapport à .
Étape 9
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 10
Évaluez les limites en insérant pour toutes les occurrences de .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Évaluez la limite de en insérant pour .
Étape 10.2
Évaluez la limite de en insérant pour .
Étape 11
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 11.1.1
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 11.1.1.1
Multipliez par .
Étape 11.1.1.2
Multipliez par .
Étape 11.1.2
L’élévation de à toute puissance positive produit .
Étape 11.1.3
Multipliez par .
Étape 11.2
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1
Additionnez et .
Étape 11.2.2
Additionnez et .
Étape 12