Calcul infinitésimal Exemples

Évaluer la limite limite lorsque x approche de infinity de ( logarithme népérien de x)/x
Étape 1
Appliquez la Règle de l’Hôpital.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Évaluez la limite du numérateur et la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.1.2
Lorsque le logarithme approche de l’infini, la valeur passe à .
Étape 1.1.3
La limite à l’infini d’un polynôme dont le coefficient directeur est positif à l’infini.
Étape 1.1.4
L’infini divisé l’infini est indéfini.
Indéfini
Étape 1.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 1.3
Déterminez la dérivée du numérateur et du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Différenciez le numérateur et le dénominateur.
Étape 1.3.2
La dérivée de par rapport à est .
Étape 1.3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.5
Multipliez par .
Étape 2
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .