Calcul infinitésimal Exemples

Évaluer l'intégrale intégrale de 2 à 3 de 1/(x^2-1) par rapport à x
Étape 1
Écrivez la fraction en utilisant la décomposition en fractions partielles.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Décomposez la fraction et multipliez par le dénominateur commun.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Factorisez la fraction.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Réécrivez comme .
Étape 1.1.1.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 1.1.2
Pour chaque facteur dans le dénominateur, créez une nouvelle fraction en utilisant le facteur comme dénominateur et une valeur inconnue comme numérateur. Comme le facteur dans le dénominateur est linéaire, placez une variable unique à sa place .
Étape 1.1.3
Pour chaque facteur dans le dénominateur, créez une nouvelle fraction en utilisant le facteur comme dénominateur et une valeur inconnue comme numérateur. Comme le facteur dans le dénominateur est linéaire, placez une variable unique à sa place .
Étape 1.1.4
Multipliez chaque fraction dans l’équation par le dénominateur de l’expression d’origine. Dans ce cas, le dénominateur est .
Étape 1.1.5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.5.1
Annulez le facteur commun.
Étape 1.1.5.2
Réécrivez l’expression.
Étape 1.1.6
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.6.1
Annulez le facteur commun.
Étape 1.1.6.2
Réécrivez l’expression.
Étape 1.1.7
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.7.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.7.1.1
Annulez le facteur commun.
Étape 1.1.7.1.2
Divisez par .
Étape 1.1.7.2
Appliquez la propriété distributive.
Étape 1.1.7.3
Déplacez à gauche de .
Étape 1.1.7.4
Réécrivez comme .
Étape 1.1.7.5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.7.5.1
Annulez le facteur commun.
Étape 1.1.7.5.2
Divisez par .
Étape 1.1.7.6
Appliquez la propriété distributive.
Étape 1.1.7.7
Multipliez par .
Étape 1.1.8
Déplacez .
Étape 1.2
Créez des équations pour les variables de fractions partielles et utilisez-les pour définir un système d’équations.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 1.2.2
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients des termes qui ne contiennent pas . Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 1.2.3
Définissez le système d’équations pour déterminer les coefficients des fractions partielles.
Étape 1.3
Résolvez le système d’équations.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.1
Réécrivez l’équation comme .
Étape 1.3.1.2
Soustrayez des deux côtés de l’équation.
Étape 1.3.2
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1
Remplacez toutes les occurrences de dans par .
Étape 1.3.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.2.1.1
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.2.1.1.1
Multipliez par .
Étape 1.3.2.2.1.1.2
Multipliez par .
Étape 1.3.2.2.1.2
Additionnez et .
Étape 1.3.3
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.1
Réécrivez l’équation comme .
Étape 1.3.3.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.2.1
Divisez chaque terme dans par .
Étape 1.3.3.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.2.2.1.1
Annulez le facteur commun.
Étape 1.3.3.2.2.1.2
Divisez par .
Étape 1.3.4
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.4.1
Remplacez toutes les occurrences de dans par .
Étape 1.3.4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.4.2.1
Multipliez par .
Étape 1.3.5
Indiquez toutes les solutions.
Étape 1.4
Remplacez chacun des coefficients de fractions partielles dans par les valeurs trouvées pour et .
Étape 1.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.5.2
Multipliez par .
Étape 1.5.3
Déplacez à gauche de .
Étape 1.5.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.5.5
Multipliez par .
Étape 2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5
Laissez . Puis . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Différenciez .
Étape 5.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 5.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.5
Additionnez et .
Étape 5.2
Remplacez la limite inférieure pour dans .
Étape 5.3
Additionnez et .
Étape 5.4
Remplacez la limite supérieure pour dans .
Étape 5.5
Additionnez et .
Étape 5.6
Les valeurs déterminées pour et seront utilisées pour évaluer l’intégrale définie.
Étape 5.7
Réécrivez le problème en utilisant , et les nouvelles limites d’intégration.
Étape 6
L’intégrale de par rapport à est .
Étape 7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8
Laissez . Puis . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 8.1.1
Différenciez .
Étape 8.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 8.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 8.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 8.1.5
Additionnez et .
Étape 8.2
Remplacez la limite inférieure pour dans .
Étape 8.3
Soustrayez de .
Étape 8.4
Remplacez la limite supérieure pour dans .
Étape 8.5
Soustrayez de .
Étape 8.6
Les valeurs déterminées pour et seront utilisées pour évaluer l’intégrale définie.
Étape 8.7
Réécrivez le problème en utilisant , et les nouvelles limites d’intégration.
Étape 9
L’intégrale de par rapport à est .
Étape 10
Remplacez et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Évaluez sur et sur .
Étape 10.2
Évaluez sur et sur .
Étape 10.3
Supprimez les parenthèses.
Étape 11
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Utilisez la propriété du quotient des logarithmes, .
Étape 11.2
Associez et .
Étape 11.3
Utilisez la propriété du quotient des logarithmes, .
Étape 11.4
Associez et .
Étape 12
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 12.1
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 12.2
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 12.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 12.4
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 12.5
Divisez par .
Étape 13
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :
Étape 14