Calcul infinitésimal Exemples

Évaluer l'intégrale intégrale de 0 à pi de sin(4x) par rapport à x
Étape 1
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez .
Étape 1.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.4
Multipliez par .
Étape 1.2
Remplacez la limite inférieure pour dans .
Étape 1.3
Multipliez par .
Étape 1.4
Remplacez la limite supérieure pour dans .
Étape 1.5
Les valeurs déterminées pour et seront utilisées pour évaluer l’intégrale définie.
Étape 1.6
Réécrivez le problème en utilisant , et les nouvelles limites d’intégration.
Étape 2
Associez et .
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
L’intégrale de par rapport à est .
Étape 5
Évaluez sur et sur .
Étape 6
La valeur exacte de est .
Étape 7
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Soustrayez des rotations complètes de jusqu’à ce que l’angle soit supérieur ou égal à et inférieur à .
Étape 7.2
La valeur exacte de est .
Étape 7.3
Multipliez par .
Étape 7.4
Additionnez et .
Étape 7.5
Multipliez par .