Calcul infinitésimal Exemples

Évaluer l'intégrale intégrale de arccsc(x) par rapport à x
Étape 1
Intégrez par parties en utilisant la formule , où et .
Étape 2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Associez et .
Étape 2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Annulez le facteur commun.
Étape 2.2.2
Réécrivez l’expression.
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Multipliez par .
Étape 4.2
Multipliez par .
Étape 5
Laissez , où . Puis . Depuis , est positif.
Étape 6
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Appliquez l’identité pythagoricienne.
Étape 6.1.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 6.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Factorisez à partir de .
Étape 6.2.2
Annulez le facteur commun.
Étape 6.2.3
Réécrivez l’expression.
Étape 7
L’intégrale de par rapport à est .
Étape 8
Remplacez toutes les occurrences de par .