Calcul infinitésimal Exemples

Évaluer l'intégrale intégrale de 1/(x(x-1)) par rapport à x
Étape 1
Écrivez la fraction en utilisant la décomposition en fractions partielles.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Décomposez la fraction et multipliez par le dénominateur commun.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Pour chaque facteur dans le dénominateur, créez une nouvelle fraction en utilisant le facteur comme dénominateur et une valeur inconnue comme numérateur. Comme le facteur dans le dénominateur est linéaire, placez une variable unique à sa place .
Étape 1.1.2
Multipliez chaque fraction dans l’équation par le dénominateur de l’expression d’origine. Dans ce cas, le dénominateur est .
Étape 1.1.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Annulez le facteur commun.
Étape 1.1.3.2
Réécrivez l’expression.
Étape 1.1.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.4.1
Annulez le facteur commun.
Étape 1.1.4.2
Réécrivez l’expression.
Étape 1.1.5
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.5.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.5.1.1
Annulez le facteur commun.
Étape 1.1.5.1.2
Divisez par .
Étape 1.1.5.2
Appliquez la propriété distributive.
Étape 1.1.5.3
Déplacez à gauche de .
Étape 1.1.5.4
Réécrivez comme .
Étape 1.1.5.5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.5.5.1
Annulez le facteur commun.
Étape 1.1.5.5.2
Divisez par .
Étape 1.1.6
Déplacez .
Étape 1.2
Créez des équations pour les variables de fractions partielles et utilisez-les pour définir un système d’équations.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 1.2.2
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients des termes qui ne contiennent pas . Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 1.2.3
Définissez le système d’équations pour déterminer les coefficients des fractions partielles.
Étape 1.3
Résolvez le système d’équations.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.1
Réécrivez l’équation comme .
Étape 1.3.1.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.2.1
Divisez chaque terme dans par .
Étape 1.3.1.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 1.3.1.2.2.2
Divisez par .
Étape 1.3.1.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.2.3.1
Divisez par .
Étape 1.3.2
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1
Remplacez toutes les occurrences de dans par .
Étape 1.3.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.2.1
Supprimez les parenthèses.
Étape 1.3.3
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.1
Réécrivez l’équation comme .
Étape 1.3.3.2
Ajoutez aux deux côtés de l’équation.
Étape 1.3.4
Résolvez le système d’équations.
Étape 1.3.5
Indiquez toutes les solutions.
Étape 1.4
Remplacez chacun des coefficients de fractions partielles dans par les valeurs trouvées pour et .
Étape 1.5
Placez le signe moins devant la fraction.
Étape 2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
L’intégrale de par rapport à est .
Étape 5
Laissez . Puis . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Différenciez .
Étape 5.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 5.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.5
Additionnez et .
Étape 5.2
Réécrivez le problème en utilisant et .
Étape 6
L’intégrale de par rapport à est .
Étape 7
Simplifiez
Étape 8
Remplacez toutes les occurrences de par .