Calcul infinitésimal Exemples

Encontre a Derivada de 2nd y=2x^(3/2)-6x^(1/2)
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.2.4
Associez et .
Étape 1.2.5
Associez les numérateurs sur le dénominateur commun.
Étape 1.2.6
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.6.1
Multipliez par .
Étape 1.2.6.2
Soustrayez de .
Étape 1.2.7
Associez et .
Étape 1.2.8
Associez et .
Étape 1.2.9
Multipliez par .
Étape 1.2.10
Factorisez à partir de .
Étape 1.2.11
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.11.1
Factorisez à partir de .
Étape 1.2.11.2
Annulez le facteur commun.
Étape 1.2.11.3
Réécrivez l’expression.
Étape 1.2.11.4
Divisez par .
Étape 1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.3.4
Associez et .
Étape 1.3.5
Associez les numérateurs sur le dénominateur commun.
Étape 1.3.6
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.6.1
Multipliez par .
Étape 1.3.6.2
Soustrayez de .
Étape 1.3.7
Placez le signe moins devant la fraction.
Étape 1.3.8
Associez et .
Étape 1.3.9
Associez et .
Étape 1.3.10
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 1.3.11
Factorisez à partir de .
Étape 1.3.12
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.12.1
Factorisez à partir de .
Étape 1.3.12.2
Annulez le facteur commun.
Étape 1.3.12.3
Réécrivez l’expression.
Étape 1.3.13
Placez le signe moins devant la fraction.
Étape 2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.2.4
Associez et .
Étape 2.2.5
Associez les numérateurs sur le dénominateur commun.
Étape 2.2.6
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.6.1
Multipliez par .
Étape 2.2.6.2
Soustrayez de .
Étape 2.2.7
Placez le signe moins devant la fraction.
Étape 2.2.8
Associez et .
Étape 2.2.9
Associez et .
Étape 2.2.10
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 2.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Réécrivez comme .
Étape 2.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.3.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.3.3
Remplacez toutes les occurrences de par .
Étape 2.3.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.5
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.5.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.3.5.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.5.2.1
Factorisez à partir de .
Étape 2.3.5.2.2
Annulez le facteur commun.
Étape 2.3.5.2.3
Réécrivez l’expression.
Étape 2.3.6
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.3.7
Associez et .
Étape 2.3.8
Associez les numérateurs sur le dénominateur commun.
Étape 2.3.9
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.9.1
Multipliez par .
Étape 2.3.9.2
Soustrayez de .
Étape 2.3.10
Placez le signe moins devant la fraction.
Étape 2.3.11
Associez et .
Étape 2.3.12
Associez et .
Étape 2.3.13
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.13.1
Utilisez la règle de puissance pour associer des exposants.
Étape 2.3.13.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.3.13.3
Associez et .
Étape 2.3.13.4
Associez les numérateurs sur le dénominateur commun.
Étape 2.3.13.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.13.5.1
Multipliez par .
Étape 2.3.13.5.2
Soustrayez de .
Étape 2.3.13.6
Placez le signe moins devant la fraction.
Étape 2.3.14
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 2.3.15
Multipliez par .
Étape 2.3.16
Associez et .
Étape 3
Déterminez la dérivée troisième.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.2
Réécrivez comme .
Étape 3.2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.3.3
Remplacez toutes les occurrences de par .
Étape 3.2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.5
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.5.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.2.5.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.5.2.1
Factorisez à partir de .
Étape 3.2.5.2.2
Annulez le facteur commun.
Étape 3.2.5.2.3
Réécrivez l’expression.
Étape 3.2.6
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.2.7
Associez et .
Étape 3.2.8
Associez les numérateurs sur le dénominateur commun.
Étape 3.2.9
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.9.1
Multipliez par .
Étape 3.2.9.2
Soustrayez de .
Étape 3.2.10
Placez le signe moins devant la fraction.
Étape 3.2.11
Associez et .
Étape 3.2.12
Associez et .
Étape 3.2.13
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.13.1
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.13.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.2.13.3
Associez et .
Étape 3.2.13.4
Associez les numérateurs sur le dénominateur commun.
Étape 3.2.13.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.13.5.1
Multipliez par .
Étape 3.2.13.5.2
Soustrayez de .
Étape 3.2.13.6
Placez le signe moins devant la fraction.
Étape 3.2.14
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 3.2.15
Multipliez par .
Étape 3.2.16
Multipliez par .
Étape 3.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.2
Réécrivez comme .
Étape 3.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.3.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3.3.3
Remplacez toutes les occurrences de par .
Étape 3.3.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3.5
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.5.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.3.5.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.5.2.1
Factorisez à partir de .
Étape 3.3.5.2.2
Annulez le facteur commun.
Étape 3.3.5.2.3
Réécrivez l’expression.
Étape 3.3.5.3
Multipliez par .
Étape 3.3.6
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.3.7
Associez et .
Étape 3.3.8
Associez les numérateurs sur le dénominateur commun.
Étape 3.3.9
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.9.1
Multipliez par .
Étape 3.3.9.2
Soustrayez de .
Étape 3.3.10
Associez et .
Étape 3.3.11
Associez et .
Étape 3.3.12
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.12.1
Déplacez .
Étape 3.3.12.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.3.12.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.3.12.4
Associez et .
Étape 3.3.12.5
Associez les numérateurs sur le dénominateur commun.
Étape 3.3.12.6
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.12.6.1
Multipliez par .
Étape 3.3.12.6.2
Additionnez et .
Étape 3.3.12.7
Placez le signe moins devant la fraction.
Étape 3.3.13
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 3.3.14
Multipliez par .
Étape 3.3.15
Multipliez par .
Étape 3.3.16
Multipliez par .
Étape 4
Déterminez la dérivée quatrième.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.2.2
Réécrivez comme .
Étape 4.2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 4.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.2.3.3
Remplacez toutes les occurrences de par .
Étape 4.2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.2.5
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.5.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.2.5.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.5.2.1
Factorisez à partir de .
Étape 4.2.5.2.2
Annulez le facteur commun.
Étape 4.2.5.2.3
Réécrivez l’expression.
Étape 4.2.5.3
Multipliez par .
Étape 4.2.6
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.2.7
Associez et .
Étape 4.2.8
Associez les numérateurs sur le dénominateur commun.
Étape 4.2.9
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.9.1
Multipliez par .
Étape 4.2.9.2
Soustrayez de .
Étape 4.2.10
Associez et .
Étape 4.2.11
Associez et .
Étape 4.2.12
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.12.1
Déplacez .
Étape 4.2.12.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.2.12.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.2.12.4
Associez et .
Étape 4.2.12.5
Associez les numérateurs sur le dénominateur commun.
Étape 4.2.12.6
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.12.6.1
Multipliez par .
Étape 4.2.12.6.2
Additionnez et .
Étape 4.2.12.7
Placez le signe moins devant la fraction.
Étape 4.2.13
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 4.2.14
Multipliez par .
Étape 4.2.15
Multipliez par .
Étape 4.2.16
Multipliez par .
Étape 4.2.17
Multipliez par .
Étape 4.2.18
Multipliez par .
Étape 4.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.3.2
Réécrivez comme .
Étape 4.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 4.3.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.3.3.3
Remplacez toutes les occurrences de par .
Étape 4.3.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.3.5
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.5.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.3.5.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.5.2.1
Factorisez à partir de .
Étape 4.3.5.2.2
Annulez le facteur commun.
Étape 4.3.5.2.3
Réécrivez l’expression.
Étape 4.3.5.3
Multipliez par .
Étape 4.3.6
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.3.7
Associez et .
Étape 4.3.8
Associez les numérateurs sur le dénominateur commun.
Étape 4.3.9
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.9.1
Multipliez par .
Étape 4.3.9.2
Soustrayez de .
Étape 4.3.10
Associez et .
Étape 4.3.11
Associez et .
Étape 4.3.12
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.12.1
Déplacez .
Étape 4.3.12.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.3.12.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.3.12.4
Associez et .
Étape 4.3.12.5
Associez les numérateurs sur le dénominateur commun.
Étape 4.3.12.6
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.12.6.1
Multipliez par .
Étape 4.3.12.6.2
Additionnez et .
Étape 4.3.12.7
Placez le signe moins devant la fraction.
Étape 4.3.13
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 4.3.14
Multipliez par .
Étape 4.3.15
Multipliez par .
Étape 4.3.16
Multipliez par .
Étape 4.3.17
Multipliez par .
Étape 4.3.18
Multipliez par .