Calcul infinitésimal Exemples

Encontre a Derivada de 2nd f(x)=sin(x^2)
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2
La dérivée de par rapport à est .
Étape 1.1.3
Remplacez toutes les occurrences de par .
Étape 1.2
Différenciez en utilisant la règle de puissance.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.2
Réorganisez les facteurs de .
Étape 2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.3.2
La dérivée de par rapport à est .
Étape 2.3.3
Remplacez toutes les occurrences de par .
Étape 2.4
Différenciez en utilisant la règle de puissance.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.4.2
Multipliez par .
Étape 2.5
Élevez à la puissance .
Étape 2.6
Élevez à la puissance .
Étape 2.7
Utilisez la règle de puissance pour associer des exposants.
Étape 2.8
Additionnez et .
Étape 2.9
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.10
Multipliez par .
Étape 2.11
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.11.1
Appliquez la propriété distributive.
Étape 2.11.2
Multipliez par .
Étape 3
Déterminez la dérivée troisième.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.2
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 3.2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.3.2
La dérivée de par rapport à est .
Étape 3.2.3.3
Remplacez toutes les occurrences de par .
Étape 3.2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.6
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.6.1
Déplacez .
Étape 3.2.6.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.6.2.1
Élevez à la puissance .
Étape 3.2.6.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.6.3
Additionnez et .
Étape 3.2.7
Déplacez à gauche de .
Étape 3.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.3.2.2
La dérivée de par rapport à est .
Étape 3.3.2.3
Remplacez toutes les occurrences de par .
Étape 3.3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3.4
Multipliez par .
Étape 3.3.5
Multipliez par .
Étape 3.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Appliquez la propriété distributive.
Étape 3.4.2
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.1
Multipliez par .
Étape 3.4.2.2
Multipliez par .
Étape 3.4.2.3
Soustrayez de .
Étape 3.4.3
Remettez les termes dans l’ordre.
Étape 4
Déterminez la dérivée quatrième.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.2.2
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 4.2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 4.2.3.2
La dérivée de par rapport à est .
Étape 4.2.3.3
Remplacez toutes les occurrences de par .
Étape 4.2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.2.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.2.6
Multipliez par .
Étape 4.2.7
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.7.1
Déplacez .
Étape 4.2.7.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.7.2.1
Élevez à la puissance .
Étape 4.2.7.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.2.7.3
Additionnez et .
Étape 4.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.3.2
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 4.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 4.3.3.2
La dérivée de par rapport à est .
Étape 4.3.3.3
Remplacez toutes les occurrences de par .
Étape 4.3.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.3.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.3.6
Élevez à la puissance .
Étape 4.3.7
Élevez à la puissance .
Étape 4.3.8
Utilisez la règle de puissance pour associer des exposants.
Étape 4.3.9
Additionnez et .
Étape 4.3.10
Déplacez à gauche de .
Étape 4.3.11
Multipliez par .
Étape 4.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1
Appliquez la propriété distributive.
Étape 4.4.2
Appliquez la propriété distributive.
Étape 4.4.3
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 4.4.3.1
Multipliez par .
Étape 4.4.3.2
Multipliez par .
Étape 4.4.3.3
Multipliez par .
Étape 4.4.3.4
Soustrayez de .
Appuyez ici pour voir plus d’étapes...
Étape 4.4.3.4.1
Déplacez .
Étape 4.4.3.4.2
Soustrayez de .
Étape 5
La dérivée quatrième de par rapport à est .