Calcul infinitésimal Exemples

Encontre a Derivada de 2nd f(x)=cos(x)^2
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.3
Remplacez toutes les occurrences de par .
Étape 1.2
La dérivée de par rapport à est .
Étape 1.3
Multipliez par .
Étape 2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 2.3
La dérivée de par rapport à est .
Étape 2.4
Élevez à la puissance .
Étape 2.5
Élevez à la puissance .
Étape 2.6
Utilisez la règle de puissance pour associer des exposants.
Étape 2.7
Additionnez et .
Étape 2.8
La dérivée de par rapport à est .
Étape 2.9
Élevez à la puissance .
Étape 2.10
Élevez à la puissance .
Étape 2.11
Utilisez la règle de puissance pour associer des exposants.
Étape 2.12
Additionnez et .
Étape 2.13
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.13.1
Appliquez la propriété distributive.
Étape 2.13.2
Multipliez par .
Étape 3
Déterminez la dérivée troisième.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.2.3
Remplacez toutes les occurrences de par .
Étape 3.2.3
La dérivée de par rapport à est .
Étape 3.2.4
Multipliez par .
Étape 3.2.5
Multipliez par .
Étape 3.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.3.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3.2.3
Remplacez toutes les occurrences de par .
Étape 3.3.3
La dérivée de par rapport à est .
Étape 3.3.4
Multipliez par .
Étape 3.4
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Réorganisez les facteurs de .
Étape 3.4.2
Additionnez et .
Étape 4
Déterminez la dérivée quatrième.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.2
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 4.3
La dérivée de par rapport à est .
Étape 4.4
Élevez à la puissance .
Étape 4.5
Élevez à la puissance .
Étape 4.6
Utilisez la règle de puissance pour associer des exposants.
Étape 4.7
Additionnez et .
Étape 4.8
La dérivée de par rapport à est .
Étape 4.9
Élevez à la puissance .
Étape 4.10
Élevez à la puissance .
Étape 4.11
Utilisez la règle de puissance pour associer des exposants.
Étape 4.12
Additionnez et .
Étape 4.13
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.13.1
Appliquez la propriété distributive.
Étape 4.13.2
Multipliez par .
Étape 5
La dérivée quatrième de par rapport à est .