Calcul infinitésimal Exemples

Évaluer l'intégrale intégrale de 2/(x-4)-3/(2x+1) par rapport à x
Étape 1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 3
Laissez . Puis . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Différenciez .
Étape 3.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.1.5
Additionnez et .
Étape 3.2
Réécrivez le problème en utilisant et .
Étape 4
L’intégrale de par rapport à est .
Étape 5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
Multipliez par .
Étape 8
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 8.1.1
Différenciez .
Étape 8.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 8.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 8.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 8.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 8.1.3.3
Multipliez par .
Étape 8.1.4
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 8.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 8.1.4.2
Additionnez et .
Étape 8.2
Réécrivez le problème en utilisant et .
Étape 9
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Multipliez par .
Étape 9.2
Déplacez à gauche de .
Étape 10
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 11
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Associez et .
Étape 11.2
Placez le signe moins devant la fraction.
Étape 12
L’intégrale de par rapport à est .
Étape 13
Simplifiez
Étape 14
Remplacez à nouveau pour chaque variable de substitution de l’intégration.
Appuyez ici pour voir plus d’étapes...
Étape 14.1
Remplacez toutes les occurrences de par .
Étape 14.2
Remplacez toutes les occurrences de par .