Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.3
Remplacez toutes les occurrences de par .
Étape 1.2
Différenciez.
Étape 1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.4
Multipliez par .
Étape 1.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.6
Simplifiez l’expression.
Étape 1.2.6.1
Additionnez et .
Étape 1.2.6.2
Multipliez par .
Étape 2
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.3
Remplacez toutes les occurrences de par .
Étape 2.3
Différenciez.
Étape 2.3.1
Multipliez par .
Étape 2.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.5
Multipliez par .
Étape 2.3.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.7
Simplifiez l’expression.
Étape 2.3.7.1
Additionnez et .
Étape 2.3.7.2
Multipliez par .
Étape 3
Étape 3.1
Réécrivez comme .
Étape 3.2
Développez à l’aide de la méthode FOIL.
Étape 3.2.1
Appliquez la propriété distributive.
Étape 3.2.2
Appliquez la propriété distributive.
Étape 3.2.3
Appliquez la propriété distributive.
Étape 3.3
Simplifiez et associez les termes similaires.
Étape 3.3.1
Simplifiez chaque terme.
Étape 3.3.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.3.1.2
Multipliez par en additionnant les exposants.
Étape 3.3.1.2.1
Déplacez .
Étape 3.3.1.2.2
Multipliez par .
Étape 3.3.1.3
Multipliez par .
Étape 3.3.1.4
Multipliez par .
Étape 3.3.1.5
Multipliez par .
Étape 3.3.1.6
Multipliez par .
Étape 3.3.2
Additionnez et .
Étape 3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.5
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.7
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.8
Multipliez par .
Étape 3.9
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.10
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.11
Multipliez par .
Étape 3.12
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.13
Additionnez et .
Étape 3.14
Simplifiez
Étape 3.14.1
Appliquez la propriété distributive.
Étape 3.14.2
Associez des termes.
Étape 3.14.2.1
Multipliez par .
Étape 3.14.2.2
Multipliez par .
Étape 4
Étape 4.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.2
Évaluez .
Étape 4.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.2.3
Multipliez par .
Étape 4.3
Différenciez en utilisant la règle de la constante.
Étape 4.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.3.2
Additionnez et .