Calcul infinitésimal Exemples

Encontre dy/dx y = square root of 2x+1
Étape 1
Utilisez pour réécrire comme .
Étape 2
Différenciez les deux côtés de l’équation.
Étape 3
La dérivée de par rapport à est .
Étape 4
Différenciez le côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 4.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.1.3
Remplacez toutes les occurrences de par .
Étape 4.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.3
Associez et .
Étape 4.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.5.1
Multipliez par .
Étape 4.5.2
Soustrayez de .
Étape 4.6
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 4.6.1
Placez le signe moins devant la fraction.
Étape 4.6.2
Associez et .
Étape 4.6.3
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 4.7
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.8
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.9
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.10
Multipliez par .
Étape 4.11
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.12
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 4.12.1
Additionnez et .
Étape 4.12.2
Associez et .
Étape 4.12.3
Annulez le facteur commun.
Étape 4.12.4
Réécrivez l’expression.
Étape 5
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 6
Remplacez par.