Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 2
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4
Simplifiez l’expression.
Étape 2.4.1
Additionnez et .
Étape 2.4.2
Déplacez à gauche de .
Étape 2.5
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.7
Additionnez et .
Étape 2.8
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.9
Multipliez.
Étape 2.9.1
Multipliez par .
Étape 2.9.2
Multipliez par .
Étape 2.10
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.11
Multipliez par .
Étape 3
Étape 3.1
Appliquez la propriété distributive.
Étape 3.2
Appliquez la propriété distributive.
Étape 3.3
Simplifiez le numérateur.
Étape 3.3.1
Simplifiez chaque terme.
Étape 3.3.1.1
Multipliez par .
Étape 3.3.1.2
Multipliez par en additionnant les exposants.
Étape 3.3.1.2.1
Déplacez .
Étape 3.3.1.2.2
Multipliez par .
Étape 3.3.1.3
Multipliez par .
Étape 3.3.2
Additionnez et .
Étape 3.4
Remettez les termes dans l’ordre.
Étape 3.5
Factorisez à partir de .
Étape 3.6
Factorisez à partir de .
Étape 3.7
Factorisez à partir de .
Étape 3.8
Réécrivez comme .
Étape 3.9
Factorisez à partir de .
Étape 3.10
Réécrivez comme .
Étape 3.11
Placez le signe moins devant la fraction.