Calcul infinitésimal Exemples

Encontre a Derivada - d/dx y=3x^(-3/2)+2x^(-1/2)+x^3-2
Étape 1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.4
Associez et .
Étape 2.5
Associez les numérateurs sur le dénominateur commun.
Étape 2.6
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1
Multipliez par .
Étape 2.6.2
Soustrayez de .
Étape 2.7
Placez le signe moins devant la fraction.
Étape 2.8
Associez et .
Étape 2.9
Multipliez par .
Étape 2.10
Associez et .
Étape 2.11
Multipliez par .
Étape 2.12
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 2.13
Placez le signe moins devant la fraction.
Étape 3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.4
Associez et .
Étape 3.5
Associez les numérateurs sur le dénominateur commun.
Étape 3.6
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1
Multipliez par .
Étape 3.6.2
Soustrayez de .
Étape 3.7
Placez le signe moins devant la fraction.
Étape 3.8
Associez et .
Étape 3.9
Multipliez par .
Étape 3.10
Associez et .
Étape 3.11
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 3.12
Factorisez à partir de .
Étape 3.13
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.13.1
Factorisez à partir de .
Étape 3.13.2
Annulez le facteur commun.
Étape 3.13.3
Réécrivez l’expression.
Étape 3.14
Placez le signe moins devant la fraction.
Étape 4
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Additionnez et .
Étape 5.2
Remettez les termes dans l’ordre.