Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Différenciez les deux côtés de l’équation.
Étape 2
Étape 2.1
Différenciez.
Étape 2.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2
Évaluez .
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.2.2
La dérivée de par rapport à est .
Étape 2.2.2.3
Remplacez toutes les occurrences de par .
Étape 2.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.4
Réécrivez comme .
Étape 2.2.5
Multipliez par .
Étape 2.2.6
Multipliez par .
Étape 2.3
Remettez les termes dans l’ordre.
Étape 3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 5
Étape 5.1
Simplifiez le côté gauche.
Étape 5.1.1
Remettez les facteurs dans l’ordre dans .
Étape 5.2
Soustrayez des deux côtés de l’équation.
Étape 5.3
Divisez chaque terme dans par et simplifiez.
Étape 5.3.1
Divisez chaque terme dans par .
Étape 5.3.2
Simplifiez le côté gauche.
Étape 5.3.2.1
Annulez le facteur commun de .
Étape 5.3.2.1.1
Annulez le facteur commun.
Étape 5.3.2.1.2
Réécrivez l’expression.
Étape 5.3.2.2
Annulez le facteur commun de .
Étape 5.3.2.2.1
Annulez le facteur commun.
Étape 5.3.2.2.2
Divisez par .
Étape 5.3.3
Simplifiez le côté droit.
Étape 5.3.3.1
Séparez les fractions.
Étape 5.3.3.2
Convertissez de à .
Étape 5.3.3.3
Placez le signe moins devant la fraction.
Étape 5.3.3.4
Associez et .
Étape 6
Remplacez par.