Calcul infinitésimal Exemples

Encontre a Derivada - d/d@VAR f(x)=(x-1)e^(3x+2)
Étape 1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 2.3
Remplacez toutes les occurrences de par .
Étape 3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.4
Multipliez par .
Étape 3.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.6
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1
Additionnez et .
Étape 3.6.2
Déplacez à gauche de .
Étape 3.7
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.8
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.9
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.10
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 3.10.1
Additionnez et .
Étape 3.10.2
Multipliez par .
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Appliquez la propriété distributive.
Étape 4.2
Multipliez par .
Étape 4.3
Remettez les termes dans l’ordre.
Étape 4.4
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1
Appliquez la propriété distributive.
Étape 4.4.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 4.4.3
Déplacez à gauche de .
Étape 4.5
Additionnez et .
Étape 4.6
Remettez les facteurs dans l’ordre dans .