Calcul infinitésimal Exemples

Encontre a Derivada - d/dx y=(x^4+2)^2(x^3+4)^4
Étape 1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3
Remplacez toutes les occurrences de par .
Étape 3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Déplacez à gauche de .
Étape 3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.5
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Additionnez et .
Étape 3.5.2
Multipliez par .
Étape 4
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 4.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.3
Remplacez toutes les occurrences de par .
Étape 5
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Déplacez à gauche de .
Étape 5.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 5.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.5
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.1
Additionnez et .
Étape 5.5.2
Multipliez par .
Étape 6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Factorisez à partir de .
Étape 6.1.2
Factorisez à partir de .
Étape 6.1.3
Factorisez à partir de .
Étape 6.2
Réorganisez les facteurs de .