Calcul infinitésimal Exemples

Encontre a Derivada - d/dx |x|*60+|x-10|*50+|30-2x|*60
Étape 1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déplacez à gauche de .
Étape 2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3
La dérivée de par rapport à est .
Étape 2.4
Associez et .
Étape 3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Déplacez à gauche de .
Étape 3.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.3.2
La dérivée de par rapport à est .
Étape 3.3.3
Remplacez toutes les occurrences de par .
Étape 3.4
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.7
Additionnez et .
Étape 3.8
Multipliez par .
Étape 3.9
Associez et .
Étape 4
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Déplacez à gauche de .
Étape 4.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 4.3.2
La dérivée de par rapport à est .
Étape 4.3.3
Remplacez toutes les occurrences de par .
Étape 4.4
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.7
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.8
Multipliez par .
Étape 4.9
Soustrayez de .
Étape 4.10
Associez et .
Étape 4.11
Déplacez à gauche de .
Étape 4.12
Placez le signe moins devant la fraction.
Étape 4.13
Multipliez par .
Étape 4.14
Associez et .
Étape 4.15
Multipliez par .
Étape 4.16
Placez le signe moins devant la fraction.
Étape 5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Appliquez la propriété distributive.
Étape 5.2
Appliquez la propriété distributive.
Étape 5.3
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Multipliez par .
Étape 5.3.2
Multipliez par .
Étape 5.3.3
Multipliez par .