Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Laissez . Remplacez toutes les occurrences de par .
Étape 1.2
Factorisez par regroupement.
Étape 1.2.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Étape 1.2.1.1
Factorisez à partir de .
Étape 1.2.1.2
Réécrivez comme plus
Étape 1.2.1.3
Appliquez la propriété distributive.
Étape 1.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 1.2.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 1.2.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 1.2.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 1.3
Remplacez toutes les occurrences de par .
Étape 2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3
Étape 3.1
Définissez égal à .
Étape 3.2
Résolvez pour .
Étape 3.2.1
Ajoutez aux deux côtés de l’équation.
Étape 3.2.2
Divisez chaque terme dans par et simplifiez.
Étape 3.2.2.1
Divisez chaque terme dans par .
Étape 3.2.2.2
Simplifiez le côté gauche.
Étape 3.2.2.2.1
Annulez le facteur commun de .
Étape 3.2.2.2.1.1
Annulez le facteur commun.
Étape 3.2.2.2.1.2
Divisez par .
Étape 3.2.3
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 3.2.4
Simplifiez le côté droit.
Étape 3.2.4.1
Évaluez .
Étape 3.2.5
La fonction cosinus est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 3.2.6
Résolvez .
Étape 3.2.6.1
Supprimez les parenthèses.
Étape 3.2.6.2
Simplifiez .
Étape 3.2.6.2.1
Multipliez par .
Étape 3.2.6.2.2
Soustrayez de .
Étape 3.2.7
Déterminez la période de .
Étape 3.2.7.1
La période de la fonction peut être calculée en utilisant .
Étape 3.2.7.2
Remplacez par dans la formule pour la période.
Étape 3.2.7.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 3.2.7.4
Divisez par .
Étape 3.2.8
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
, pour tout entier
Étape 4
Étape 4.1
Définissez égal à .
Étape 4.2
Résolvez pour .
Étape 4.2.1
Ajoutez aux deux côtés de l’équation.
Étape 4.2.2
La plage du cosinus est . Comme n’est pas sur cette plage, il n’y a pas de solution.
Aucune solution
Aucune solution
Aucune solution
Étape 5
La solution finale est l’ensemble des valeurs qui rendent vraie.
, pour tout entier