Calcul infinitésimal Exemples

Trouver la primitive f(x)=2/(x^3)+9x^5
Étape 1
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 2
Définissez l’intégrale à résoudre.
Étape 3
Séparez l’intégrale unique en plusieurs intégrales.
Étape 4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 5.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 5.2.2
Multipliez par .
Étape 6
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 7
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Associez et .
Étape 7.2
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 8
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 9
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 10
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Simplifiez
Étape 10.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 10.2.1
Placez le signe moins devant la fraction.
Étape 10.2.2
Associez et .
Étape 10.2.3
Associez et .
Étape 10.2.4
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 10.2.4.1
Factorisez à partir de .
Étape 10.2.4.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.4.2.1
Factorisez à partir de .
Étape 10.2.4.2.2
Annulez le facteur commun.
Étape 10.2.4.2.3
Réécrivez l’expression.
Étape 10.3
Remettez les termes dans l’ordre.
Étape 11
La réponse est la dérivée première de la fonction .