Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une fonction.
Étape 2
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 3
Définissez l’intégrale à résoudre.
Étape 4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5
Étape 5.1
Utilisez pour réécrire comme .
Étape 5.2
Retirez du dénominateur en l’élevant à la puissance .
Étape 5.3
Multipliez les exposants dans .
Étape 5.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 5.3.2
Associez et .
Étape 5.3.3
Placez le signe moins devant la fraction.
Étape 6
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 7
Étape 7.1
Réécrivez comme .
Étape 7.2
Simplifiez
Étape 7.2.1
Associez et .
Étape 7.2.2
Annulez le facteur commun à et .
Étape 7.2.2.1
Factorisez à partir de .
Étape 7.2.2.2
Annulez les facteurs communs.
Étape 7.2.2.2.1
Factorisez à partir de .
Étape 7.2.2.2.2
Annulez le facteur commun.
Étape 7.2.2.2.3
Réécrivez l’expression.
Étape 8
La réponse est la dérivée première de la fonction .