Calcul infinitésimal Exemples

Trouver la primitive (5-4x^3+2x^6)/(x^6)
Étape 1
Écrivez comme une fonction.
Étape 2
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 3
Définissez l’intégrale à résoudre.
Étape 4
Retirez du dénominateur en l’élevant à la puissance .
Étape 5
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 5.2
Multipliez par .
Étape 6
Développez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Appliquez la propriété distributive.
Étape 6.2
Appliquez la propriété distributive.
Étape 6.3
Utilisez la règle de puissance pour associer des exposants.
Étape 6.4
Soustrayez de .
Étape 6.5
Utilisez la règle de puissance pour associer des exposants.
Étape 6.6
Soustrayez de .
Étape 6.7
Tout ce qui est élevé à la puissance est .
Étape 6.8
Multipliez par .
Étape 6.9
Remettez dans l’ordre et .
Étape 7
Séparez l’intégrale unique en plusieurs intégrales.
Étape 8
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 9
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 10
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Associez et .
Étape 10.2
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 11
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 12
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 13
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 13.1
Associez et .
Étape 13.2
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 14
Appliquez la règle de la constante.
Étape 15
Simplifiez
Étape 16
La réponse est la dérivée première de la fonction .