Calcul infinitésimal Exemples

Trouver les minimums et maximums locaux cos(2x)
Étape 1
Écrivez comme une fonction.
Étape 2
Déterminez la dérivée première de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.1.2
La dérivée de par rapport à est .
Étape 2.1.3
Remplacez toutes les occurrences de par .
Étape 2.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Multipliez par .
Étape 2.2.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.4
Multipliez par .
Étape 3
Déterminez la dérivée seconde de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.2
La dérivée de par rapport à est .
Étape 3.2.3
Remplacez toutes les occurrences de par .
Étape 3.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.2
Multipliez par .
Étape 3.3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3.4
Multipliez par .
Étape 4
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 5
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Divisez chaque terme dans par .
Étape 5.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Annulez le facteur commun.
Étape 5.2.1.2
Divisez par .
Étape 5.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Divisez par .
Étape 6
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 7
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
La valeur exacte de est .
Étape 8
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Divisez chaque terme dans par .
Étape 8.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1.1
Annulez le facteur commun.
Étape 8.2.1.2
Divisez par .
Étape 8.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1
Divisez par .
Étape 9
La fonction sinus est positive dans les premier et deuxième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le deuxième quadrant.
Étape 10
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 10.1.1
Multipliez par .
Étape 10.1.2
Additionnez et .
Étape 10.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.1
Divisez chaque terme dans par .
Étape 10.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 10.2.2.1.1
Annulez le facteur commun.
Étape 10.2.2.1.2
Divisez par .
Étape 11
La solution de l’équation est .
Étape 12
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 13
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 13.1
Multipliez par .
Étape 13.2
La valeur exacte de est .
Étape 13.3
Multipliez par .
Étape 14
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 15
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 15.1
Remplacez la variable par dans l’expression.
Étape 15.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 15.2.1
Multipliez par .
Étape 15.2.2
La valeur exacte de est .
Étape 15.2.3
La réponse finale est .
Étape 16
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 17
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 17.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 17.1.1
Annulez le facteur commun.
Étape 17.1.2
Réécrivez l’expression.
Étape 17.2
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le cosinus est négatif dans le deuxième quadrant.
Étape 17.3
La valeur exacte de est .
Étape 17.4
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 17.4.1
Multipliez par .
Étape 17.4.2
Multipliez par .
Étape 18
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 19
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 19.1
Remplacez la variable par dans l’expression.
Étape 19.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 19.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 19.2.1.1
Annulez le facteur commun.
Étape 19.2.1.2
Réécrivez l’expression.
Étape 19.2.2
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le cosinus est négatif dans le deuxième quadrant.
Étape 19.2.3
La valeur exacte de est .
Étape 19.2.4
Multipliez par .
Étape 19.2.5
La réponse finale est .
Étape 20
Ce sont les extrema locaux pour .
est un maximum local
est un minimum local
Étape 21