Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2
Évaluez .
Étape 1.2.1
Réécrivez comme .
Étape 1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3
La dérivée de par rapport à est .
Étape 1.4
Simplifiez
Étape 1.4.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.4.2
Remettez les termes dans l’ordre.
Étape 2
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Étape 2.2.1
Réécrivez comme .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3
Évaluez .
Étape 2.3.1
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 2.3.2
Réécrivez comme .
Étape 2.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.3.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.3.3
Remplacez toutes les occurrences de par .
Étape 2.3.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.6
Multipliez les exposants dans .
Étape 2.3.6.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.3.6.2
Multipliez par .
Étape 2.3.7
Multipliez par .
Étape 2.3.8
Élevez à la puissance .
Étape 2.3.9
Utilisez la règle de puissance pour associer des exposants.
Étape 2.3.10
Soustrayez de .
Étape 2.3.11
Multipliez par .
Étape 2.3.12
Multipliez par .
Étape 2.3.13
Additionnez et .
Étape 2.4
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 2.5
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 2.6
Associez et .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Étape 4.1
Déterminez la dérivée première.
Étape 4.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.2
Évaluez .
Étape 4.1.2.1
Réécrivez comme .
Étape 4.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.3
La dérivée de par rapport à est .
Étape 4.1.4
Simplifiez
Étape 4.1.4.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 4.1.4.2
Remettez les termes dans l’ordre.
Étape 4.2
La dérivée première de par rapport à est .
Étape 5
Étape 5.1
Définissez la dérivée première égale à .
Étape 5.2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Étape 5.2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 5.2.2
Comme contient des nombres et des variables, deux étapes sont nécessaires pour déterminer le plus petit multiple commun. Déterminez le plus petit multiple commun pour la partie numérique puis déterminez le plus petit multiple commun pour la partie variable .
Étape 5.2.3
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 5.2.4
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 5.2.5
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 5.2.6
Le facteur pour est lui-même.
se produit fois.
Étape 5.2.7
Les facteurs pour sont , qui correspond à multipliés entre eux fois.
se produit fois.
Étape 5.2.8
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 5.2.9
Multipliez par .
Étape 5.3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Étape 5.3.1
Multipliez chaque terme dans par .
Étape 5.3.2
Simplifiez le côté gauche.
Étape 5.3.2.1
Simplifiez chaque terme.
Étape 5.3.2.1.1
Annulez le facteur commun de .
Étape 5.3.2.1.1.1
Factorisez à partir de .
Étape 5.3.2.1.1.2
Annulez le facteur commun.
Étape 5.3.2.1.1.3
Réécrivez l’expression.
Étape 5.3.2.1.2
Annulez le facteur commun de .
Étape 5.3.2.1.2.1
Placez le signe négatif initial dans dans le numérateur.
Étape 5.3.2.1.2.2
Annulez le facteur commun.
Étape 5.3.2.1.2.3
Réécrivez l’expression.
Étape 5.3.3
Simplifiez le côté droit.
Étape 5.3.3.1
Multipliez par .
Étape 5.4
Ajoutez aux deux côtés de l’équation.
Étape 6
Étape 6.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 6.2
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 6.3
Résolvez .
Étape 6.3.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 6.3.2
Simplifiez .
Étape 6.3.2.1
Réécrivez comme .
Étape 6.3.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 6.3.2.3
Plus ou moins est .
Étape 7
Points critiques à évaluer.
Étape 8
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 9
Étape 9.1
Simplifiez chaque terme.
Étape 9.1.1
Un à n’importe quelle puissance est égal à un.
Étape 9.1.2
Annulez le facteur commun de .
Étape 9.1.2.1
Annulez le facteur commun.
Étape 9.1.2.2
Réécrivez l’expression.
Étape 9.1.3
Multipliez par .
Étape 9.1.4
Un à n’importe quelle puissance est égal à un.
Étape 9.1.5
Divisez par .
Étape 9.2
Additionnez et .
Étape 10
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 11
Étape 11.1
Remplacez la variable par dans l’expression.
Étape 11.2
Simplifiez le résultat.
Étape 11.2.1
Simplifiez chaque terme.
Étape 11.2.1.1
Divisez par .
Étape 11.2.1.2
Le logarithme naturel de est .
Étape 11.2.2
Additionnez et .
Étape 11.2.3
La réponse finale est .
Étape 12
Ce sont les extrema locaux pour .
est un minimum local
Étape 13