Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Différenciez.
Étape 1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2
Évaluez .
Étape 1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.3
Multipliez par .
Étape 1.3
Évaluez .
Étape 1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.3
Multipliez par .
Étape 2
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.3
Multipliez par .
Étape 2.3
Évaluez .
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.3
Multipliez par .
Étape 2.4
Différenciez en utilisant la règle de la constante.
Étape 2.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4.2
Additionnez et .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Étape 4.1
Déterminez la dérivée première.
Étape 4.1.1
Différenciez.
Étape 4.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.2
Évaluez .
Étape 4.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.2.3
Multipliez par .
Étape 4.1.3
Évaluez .
Étape 4.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.3.3
Multipliez par .
Étape 4.2
La dérivée première de par rapport à est .
Étape 5
Étape 5.1
Définissez la dérivée première égale à .
Étape 5.2
Factorisez le côté gauche de l’équation.
Étape 5.2.1
Factorisez à partir de .
Étape 5.2.1.1
Factorisez à partir de .
Étape 5.2.1.2
Factorisez à partir de .
Étape 5.2.1.3
Factorisez à partir de .
Étape 5.2.1.4
Factorisez à partir de .
Étape 5.2.1.5
Factorisez à partir de .
Étape 5.2.2
Factorisez en utilisant la règle du carré parfait.
Étape 5.2.2.1
Réécrivez comme .
Étape 5.2.2.2
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 5.2.2.3
Réécrivez le polynôme.
Étape 5.2.2.4
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 5.3
Divisez chaque terme dans par et simplifiez.
Étape 5.3.1
Divisez chaque terme dans par .
Étape 5.3.2
Simplifiez le côté gauche.
Étape 5.3.2.1
Annulez le facteur commun de .
Étape 5.3.2.1.1
Annulez le facteur commun.
Étape 5.3.2.1.2
Divisez par .
Étape 5.3.3
Simplifiez le côté droit.
Étape 5.3.3.1
Divisez par .
Étape 5.4
Définissez le égal à .
Étape 5.5
Ajoutez aux deux côtés de l’équation.
Étape 6
Étape 6.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 7
Points critiques à évaluer.
Étape 8
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 9
Étape 9.1
Multipliez par .
Étape 9.2
Soustrayez de .
Étape 10
Étape 10.1
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée première ou indéfinie.
Étape 10.2
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Étape 10.2.1
Remplacez la variable par dans l’expression.
Étape 10.2.2
Simplifiez le résultat.
Étape 10.2.2.1
Simplifiez chaque terme.
Étape 10.2.2.1.1
L’élévation de à toute puissance positive produit .
Étape 10.2.2.1.2
Multipliez par .
Étape 10.2.2.1.3
Multipliez par .
Étape 10.2.2.2
Simplifiez en ajoutant des nombres.
Étape 10.2.2.2.1
Additionnez et .
Étape 10.2.2.2.2
Additionnez et .
Étape 10.2.2.3
La réponse finale est .
Étape 10.3
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Étape 10.3.1
Remplacez la variable par dans l’expression.
Étape 10.3.2
Simplifiez le résultat.
Étape 10.3.2.1
Simplifiez chaque terme.
Étape 10.3.2.1.1
Élevez à la puissance .
Étape 10.3.2.1.2
Multipliez par .
Étape 10.3.2.1.3
Multipliez par .
Étape 10.3.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 10.3.2.2.1
Soustrayez de .
Étape 10.3.2.2.2
Additionnez et .
Étape 10.3.2.3
La réponse finale est .
Étape 10.4
Comma la dérivée première n’a pas changé de signe autour de , ce n’est pas ni un maximum ni un minimum local.
Pas un maximum ni un minimum local
Étape 10.5
Aucun maximum ni minimum local déterminé pour .
Aucun maximum ni minimum local
Aucun maximum ni minimum local
Étape 11