Calcul infinitésimal Exemples

Encontre dy/dx x^3-3x^2y+3xy^2-y^3=10
Étape 1
Différenciez les deux côtés de l’équation.
Étape 2
Différenciez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 2.2.3
Réécrivez comme .
Étape 2.2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.5
Déplacez à gauche de .
Étape 2.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 2.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.3.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.3.3
Remplacez toutes les occurrences de par .
Étape 2.3.4
Réécrivez comme .
Étape 2.3.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.6
Déplacez à gauche de .
Étape 2.3.7
Multipliez par .
Étape 2.4
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.4.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.4.2.3
Remplacez toutes les occurrences de par .
Étape 2.4.3
Réécrivez comme .
Étape 2.4.4
Multipliez par .
Étape 2.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Appliquez la propriété distributive.
Étape 2.5.2
Appliquez la propriété distributive.
Étape 2.5.3
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.3.1
Multipliez par .
Étape 2.5.3.2
Multipliez par .
Étape 2.5.4
Remettez les termes dans l’ordre.
Étape 3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Soustrayez des deux côtés de l’équation.
Étape 5.1.2
Soustrayez des deux côtés de l’équation.
Étape 5.1.3
Ajoutez aux deux côtés de l’équation.
Étape 5.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Factorisez à partir de .
Étape 5.2.2
Factorisez à partir de .
Étape 5.2.3
Factorisez à partir de .
Étape 5.2.4
Factorisez à partir de .
Étape 5.2.5
Factorisez à partir de .
Étape 5.3
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Factorisez par regroupement.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1.1.1
Remettez les termes dans l’ordre.
Étape 5.3.1.1.2
Remettez dans l’ordre et .
Étape 5.3.1.1.3
Factorisez à partir de .
Étape 5.3.1.1.4
Réécrivez comme plus
Étape 5.3.1.1.5
Appliquez la propriété distributive.
Étape 5.3.1.1.6
Multipliez par .
Étape 5.3.1.1.7
Multipliez par .
Étape 5.3.1.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 5.3.1.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 5.3.1.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 5.3.2
Supprimez les parenthèses inutiles.
Étape 5.4
Associez les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 5.4.1
Factorisez à partir de .
Étape 5.4.2
Factorisez à partir de .
Étape 5.4.3
Factorisez à partir de .
Étape 5.4.4
Réécrivez comme .
Étape 5.4.5
Supprimez les parenthèses.
Étape 5.4.6
Élevez à la puissance .
Étape 5.4.7
Élevez à la puissance .
Étape 5.4.8
Utilisez la règle de puissance pour associer des exposants.
Étape 5.4.9
Additionnez et .
Étape 5.4.10
Multipliez par .
Étape 5.5
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.1
Divisez chaque terme dans par .
Étape 5.5.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.5.2.1.1
Annulez le facteur commun.
Étape 5.5.2.1.2
Réécrivez l’expression.
Étape 5.5.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.5.2.2.1
Annulez le facteur commun.
Étape 5.5.2.2.2
Divisez par .
Étape 5.5.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.3.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.5.3.1.1.1
Annulez le facteur commun.
Étape 5.5.3.1.1.2
Réécrivez l’expression.
Étape 5.5.3.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.5.3.1.2.1
Annulez le facteur commun.
Étape 5.5.3.1.2.2
Réécrivez l’expression.
Étape 5.5.3.1.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 5.5.3.1.3.1
Factorisez à partir de .
Étape 5.5.3.1.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.3.1.3.2.1
Factorisez à partir de .
Étape 5.5.3.1.3.2.2
Annulez le facteur commun.
Étape 5.5.3.1.3.2.3
Réécrivez l’expression.
Étape 5.5.3.1.4
Placez le signe moins devant la fraction.
Étape 6
Remplacez par.