Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.2
Évaluez la limite du numérateur.
Étape 1.2.1
Évaluez la limite.
Étape 1.2.1.1
Déplacez la limite dans la fonction trigonométrique car le sinus est continu.
Étape 1.2.1.2
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 1.2.2
Évaluez la limite de en insérant pour .
Étape 1.2.3
Simplifiez la réponse.
Étape 1.2.3.1
L’élévation de à toute puissance positive produit .
Étape 1.2.3.2
La valeur exacte de est .
Étape 1.3
Évaluez la limite de en insérant pour .
Étape 1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 3
Étape 3.1
Différenciez le numérateur et le dénominateur.
Étape 3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.2
La dérivée de par rapport à est .
Étape 3.2.3
Remplacez toutes les occurrences de par .
Étape 3.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.4
Réorganisez les facteurs de .
Étape 3.5
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4
Divisez par .
Étape 5
Placez le terme hors de la limite car il constant par rapport à .
Étape 6
Divisez la limite en utilisant la règle du produit des limites sur la limite lorsque approche de .
Étape 7
Déplacez la limite dans la fonction trigonométrique car le cosinus est continu.
Étape 8
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 9
Étape 9.1
Évaluez la limite de en insérant pour .
Étape 9.2
Évaluez la limite de en insérant pour .
Étape 10
Étape 10.1
Multipliez par .
Étape 10.2
L’élévation de à toute puissance positive produit .
Étape 10.3
La valeur exacte de est .
Étape 10.4
Multipliez par .