Calcul infinitésimal Exemples

Évaluer l'intégrale intégrale de 3cos(5x)^2 par rapport à x
Étape 1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Différenciez .
Étape 2.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.4
Multipliez par .
Étape 2.2
Réécrivez le problème en utilisant et .
Étape 3
Associez et .
Étape 4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5
Associez et .
Étape 6
Utilisez la formule de l’angle moitié pour réécrire en .
Étape 7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Multipliez par .
Étape 8.2
Multipliez par .
Étape 9
Séparez l’intégrale unique en plusieurs intégrales.
Étape 10
Appliquez la règle de la constante.
Étape 11
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 11.1.1
Différenciez .
Étape 11.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 11.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 11.1.4
Multipliez par .
Étape 11.2
Réécrivez le problème en utilisant et .
Étape 12
Associez et .
Étape 13
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 14
L’intégrale de par rapport à est .
Étape 15
Simplifiez
Étape 16
Remplacez à nouveau pour chaque variable de substitution de l’intégration.
Appuyez ici pour voir plus d’étapes...
Étape 16.1
Remplacez toutes les occurrences de par .
Étape 16.2
Remplacez toutes les occurrences de par .
Étape 16.3
Remplacez toutes les occurrences de par .
Étape 17
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 17.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 17.1.1
Multipliez par .
Étape 17.1.2
Associez et .
Étape 17.2
Appliquez la propriété distributive.
Étape 17.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 17.3.1
Factorisez à partir de .
Étape 17.3.2
Factorisez à partir de .
Étape 17.3.3
Annulez le facteur commun.
Étape 17.3.4
Réécrivez l’expression.
Étape 17.4
Associez et .
Étape 17.5
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 17.5.1
Multipliez par .
Étape 17.5.2
Multipliez par .
Étape 18
Remettez les termes dans l’ordre.