Calcul infinitésimal Exemples

Évaluer l'intégrale intégrale de 0 à racine quatrième de pi de x^3cos(x^4) par rapport à x
Étape 1
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez .
Étape 1.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2
Remplacez la limite inférieure pour dans .
Étape 1.3
L’élévation de à toute puissance positive produit .
Étape 1.4
Remplacez la limite supérieure pour dans .
Étape 1.5
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Utilisez pour réécrire comme .
Étape 1.5.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.5.3
Associez et .
Étape 1.5.4
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.4.1
Factorisez à partir de .
Étape 1.5.4.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.4.2.1
Factorisez à partir de .
Étape 1.5.4.2.2
Annulez le facteur commun.
Étape 1.5.4.2.3
Réécrivez l’expression.
Étape 1.5.5
Réécrivez comme .
Étape 1.6
Les valeurs déterminées pour et seront utilisées pour évaluer l’intégrale définie.
Étape 1.7
Réécrivez le problème en utilisant , et les nouvelles limites d’intégration.
Étape 2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Utilisez pour réécrire comme .
Étape 2.1.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.1.3
Associez et .
Étape 2.1.4
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.4.1
Factorisez à partir de .
Étape 2.1.4.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.4.2.1
Factorisez à partir de .
Étape 2.1.4.2.2
Annulez le facteur commun.
Étape 2.1.4.2.3
Réécrivez l’expression.
Étape 2.1.4.2.4
Divisez par .
Étape 2.2
Associez et .
Étape 2.3
Associez et .
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Différenciez .
Étape 4.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.2
Remplacez la limite inférieure pour dans .
Étape 4.3
L’élévation de à toute puissance positive produit .
Étape 4.4
Remplacez la limite supérieure pour dans .
Étape 4.5
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 4.5.1
Utilisez pour réécrire comme .
Étape 4.5.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.5.3
Associez et .
Étape 4.5.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.5.4.1
Annulez le facteur commun.
Étape 4.5.4.2
Réécrivez l’expression.
Étape 4.5.5
Simplifiez
Étape 4.6
Les valeurs déterminées pour et seront utilisées pour évaluer l’intégrale définie.
Étape 4.7
Réécrivez le problème en utilisant , et les nouvelles limites d’intégration.
Étape 5
Associez et .
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Multipliez par .
Étape 7.2
Multipliez par .
Étape 8
L’intégrale de par rapport à est .
Étape 9
Évaluez sur et sur .
Étape 10
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 10.1
La valeur exacte de est .
Étape 10.2
Multipliez par .
Étape 10.3
Additionnez et .
Étape 10.4
Associez et .
Étape 11
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 11.1.1
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant.
Étape 11.1.2
La valeur exacte de est .
Étape 11.2
Divisez par .