Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une fonction.
Étape 2
Étape 2.1
Déterminez la dérivée première.
Étape 2.1.1
Différenciez.
Étape 2.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.2
Évaluez .
Étape 2.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.2.3
Multipliez par .
Étape 2.1.3
Évaluez .
Étape 2.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.3.3
Multipliez par .
Étape 2.2
Déterminez la dérivée seconde.
Étape 2.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.2
Évaluez .
Étape 2.2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.2.3
Multipliez par .
Étape 2.2.3
Évaluez .
Étape 2.2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.3.3
Multipliez par .
Étape 2.2.4
Évaluez .
Étape 2.2.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.4.3
Multipliez par .
Étape 2.3
La dérivée seconde de par rapport à est .
Étape 3
Étape 3.1
Définissez la dérivée seconde égale à .
Étape 3.2
Factorisez à partir de .
Étape 3.2.1
Factorisez à partir de .
Étape 3.2.2
Factorisez à partir de .
Étape 3.2.3
Factorisez à partir de .
Étape 3.2.4
Factorisez à partir de .
Étape 3.2.5
Factorisez à partir de .
Étape 3.3
Divisez chaque terme dans par et simplifiez.
Étape 3.3.1
Divisez chaque terme dans par .
Étape 3.3.2
Simplifiez le côté gauche.
Étape 3.3.2.1
Annulez le facteur commun de .
Étape 3.3.2.1.1
Annulez le facteur commun.
Étape 3.3.2.1.2
Divisez par .
Étape 3.3.3
Simplifiez le côté droit.
Étape 3.3.3.1
Divisez par .
Étape 3.4
Utilisez la formule quadratique pour déterminer les solutions.
Étape 3.5
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 3.6
Simplifiez
Étape 3.6.1
Simplifiez le numérateur.
Étape 3.6.1.1
Élevez à la puissance .
Étape 3.6.1.2
Multipliez .
Étape 3.6.1.2.1
Multipliez par .
Étape 3.6.1.2.2
Multipliez par .
Étape 3.6.1.3
Soustrayez de .
Étape 3.6.1.4
Réécrivez comme .
Étape 3.6.1.4.1
Factorisez à partir de .
Étape 3.6.1.4.2
Réécrivez comme .
Étape 3.6.1.5
Extrayez les termes de sous le radical.
Étape 3.6.2
Multipliez par .
Étape 3.6.3
Simplifiez .
Étape 3.7
Simplifiez l’expression pour résoudre la partie du .
Étape 3.7.1
Simplifiez le numérateur.
Étape 3.7.1.1
Élevez à la puissance .
Étape 3.7.1.2
Multipliez .
Étape 3.7.1.2.1
Multipliez par .
Étape 3.7.1.2.2
Multipliez par .
Étape 3.7.1.3
Soustrayez de .
Étape 3.7.1.4
Réécrivez comme .
Étape 3.7.1.4.1
Factorisez à partir de .
Étape 3.7.1.4.2
Réécrivez comme .
Étape 3.7.1.5
Extrayez les termes de sous le radical.
Étape 3.7.2
Multipliez par .
Étape 3.7.3
Simplifiez .
Étape 3.7.4
Remplacez le par .
Étape 3.8
Simplifiez l’expression pour résoudre la partie du .
Étape 3.8.1
Simplifiez le numérateur.
Étape 3.8.1.1
Élevez à la puissance .
Étape 3.8.1.2
Multipliez .
Étape 3.8.1.2.1
Multipliez par .
Étape 3.8.1.2.2
Multipliez par .
Étape 3.8.1.3
Soustrayez de .
Étape 3.8.1.4
Réécrivez comme .
Étape 3.8.1.4.1
Factorisez à partir de .
Étape 3.8.1.4.2
Réécrivez comme .
Étape 3.8.1.5
Extrayez les termes de sous le radical.
Étape 3.8.2
Multipliez par .
Étape 3.8.3
Simplifiez .
Étape 3.8.4
Remplacez le par .
Étape 3.9
La réponse finale est la combinaison des deux solutions.
Étape 4
Étape 4.1
Remplacez dans pour déterminer la valeur de .
Étape 4.1.1
Remplacez la variable par dans l’expression.
Étape 4.1.2
Simplifiez le résultat.
Étape 4.1.2.1
Simplifiez chaque terme.
Étape 4.1.2.1.1
Élevez à la puissance .
Étape 4.1.2.1.2
Élevez à la puissance .
Étape 4.1.2.1.3
Multipliez par .
Étape 4.1.2.1.4
Élevez à la puissance .
Étape 4.1.2.1.5
Multipliez par .
Étape 4.1.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 4.1.2.2.1
Soustrayez de .
Étape 4.1.2.2.2
Additionnez et .
Étape 4.1.2.3
La réponse finale est .
Étape 4.2
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 4.3
Remplacez dans pour déterminer la valeur de .
Étape 4.3.1
Remplacez la variable par dans l’expression.
Étape 4.3.2
Simplifiez le résultat.
Étape 4.3.2.1
Simplifiez chaque terme.
Étape 4.3.2.1.1
Élevez à la puissance .
Étape 4.3.2.1.2
Élevez à la puissance .
Étape 4.3.2.1.3
Multipliez par .
Étape 4.3.2.1.4
Élevez à la puissance .
Étape 4.3.2.1.5
Multipliez par .
Étape 4.3.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 4.3.2.2.1
Soustrayez de .
Étape 4.3.2.2.2
Additionnez et .
Étape 4.3.2.3
La réponse finale est .
Étape 4.4
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 4.5
Déterminez les points qui pourraient être des points d’inflexion.
Étape 5
Divisez en intervalles autour des points qui pourraient potentiellement être des points d’inflexion.
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Simplifiez chaque terme.
Étape 6.2.1.1
Élevez à la puissance .
Étape 6.2.1.2
Multipliez par .
Étape 6.2.1.3
Multipliez par .
Étape 6.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 6.2.2.1
Soustrayez de .
Étape 6.2.2.2
Additionnez et .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 7
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Étape 7.2.1
Simplifiez chaque terme.
Étape 7.2.1.1
Élevez à la puissance .
Étape 7.2.1.2
Multipliez par .
Étape 7.2.1.3
Multipliez par .
Étape 7.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 7.2.2.1
Soustrayez de .
Étape 7.2.2.2
Additionnez et .
Étape 7.2.3
La réponse finale est .
Étape 7.3
Sur , la dérivée seconde est . Comme elle est négative, la dérivée seconde est décroissante sur l’intervalle
Diminue sur depuis
Diminue sur depuis
Étape 8
Étape 8.1
Remplacez la variable par dans l’expression.
Étape 8.2
Simplifiez le résultat.
Étape 8.2.1
Simplifiez chaque terme.
Étape 8.2.1.1
Élevez à la puissance .
Étape 8.2.1.2
Multipliez par .
Étape 8.2.1.3
Multipliez par .
Étape 8.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 8.2.2.1
Soustrayez de .
Étape 8.2.2.2
Additionnez et .
Étape 8.2.3
La réponse finale est .
Étape 8.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 9
Un point d’inflexion est un point sur une courbe sur lequel la concavité passe du signe plus au signe moins ou du signe moins au signe plus. Dans ce cas, les points d’inflexion sont .
Étape 10