Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une fonction.
Étape 2
Étape 2.1
Déterminez la dérivée première.
Étape 2.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.2
Évaluez .
Étape 2.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.2.3
Multipliez par .
Étape 2.1.3
Évaluez .
Étape 2.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.3.3
Multipliez par .
Étape 2.1.4
Évaluez .
Étape 2.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.4.3
Multipliez par .
Étape 2.1.5
Différenciez en utilisant la règle de la constante.
Étape 2.1.5.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.5.2
Additionnez et .
Étape 2.2
Déterminez la dérivée seconde.
Étape 2.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.2
Évaluez .
Étape 2.2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.2.3
Multipliez par .
Étape 2.2.3
Évaluez .
Étape 2.2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.3.3
Multipliez par .
Étape 2.2.4
Différenciez en utilisant la règle de la constante.
Étape 2.2.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.4.2
Additionnez et .
Étape 2.3
La dérivée seconde de par rapport à est .
Étape 3
Étape 3.1
Définissez la dérivée seconde égale à .
Étape 3.2
Factorisez à partir de .
Étape 3.2.1
Factorisez à partir de .
Étape 3.2.2
Factorisez à partir de .
Étape 3.2.3
Factorisez à partir de .
Étape 3.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.4
Définissez égal à .
Étape 3.5
Définissez égal à et résolvez .
Étape 3.5.1
Définissez égal à .
Étape 3.5.2
Ajoutez aux deux côtés de l’équation.
Étape 3.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 4
Étape 4.1
Remplacez dans pour déterminer la valeur de .
Étape 4.1.1
Remplacez la variable par dans l’expression.
Étape 4.1.2
Simplifiez le résultat.
Étape 4.1.2.1
Simplifiez chaque terme.
Étape 4.1.2.1.1
L’élévation de à toute puissance positive produit .
Étape 4.1.2.1.2
Multipliez par .
Étape 4.1.2.1.3
L’élévation de à toute puissance positive produit .
Étape 4.1.2.1.4
Multipliez par .
Étape 4.1.2.1.5
Multipliez par .
Étape 4.1.2.2
Simplifiez en ajoutant des nombres.
Étape 4.1.2.2.1
Additionnez et .
Étape 4.1.2.2.2
Additionnez et .
Étape 4.1.2.2.3
Additionnez et .
Étape 4.1.2.3
La réponse finale est .
Étape 4.2
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 4.3
Remplacez dans pour déterminer la valeur de .
Étape 4.3.1
Remplacez la variable par dans l’expression.
Étape 4.3.2
Simplifiez le résultat.
Étape 4.3.2.1
Simplifiez chaque terme.
Étape 4.3.2.1.1
Élevez à la puissance .
Étape 4.3.2.1.2
Multipliez par .
Étape 4.3.2.1.3
Élevez à la puissance .
Étape 4.3.2.1.4
Multipliez par .
Étape 4.3.2.1.5
Multipliez par .
Étape 4.3.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 4.3.2.2.1
Additionnez et .
Étape 4.3.2.2.2
Soustrayez de .
Étape 4.3.2.2.3
Additionnez et .
Étape 4.3.2.3
La réponse finale est .
Étape 4.4
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 4.5
Déterminez les points qui pourraient être des points d’inflexion.
Étape 5
Divisez en intervalles autour des points qui pourraient potentiellement être des points d’inflexion.
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Simplifiez chaque terme.
Étape 6.2.1.1
Élevez à la puissance .
Étape 6.2.1.2
Multipliez par .
Étape 6.2.1.3
Multipliez par .
Étape 6.2.2
Soustrayez de .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur , la dérivée seconde est . Comme elle est négative, la dérivée seconde est décroissante sur l’intervalle
Diminue sur depuis
Diminue sur depuis
Étape 7
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Étape 7.2.1
Simplifiez chaque terme.
Étape 7.2.1.1
Un à n’importe quelle puissance est égal à un.
Étape 7.2.1.2
Multipliez par .
Étape 7.2.1.3
Multipliez par .
Étape 7.2.2
Additionnez et .
Étape 7.2.3
La réponse finale est .
Étape 7.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 8
Étape 8.1
Remplacez la variable par dans l’expression.
Étape 8.2
Simplifiez le résultat.
Étape 8.2.1
Simplifiez chaque terme.
Étape 8.2.1.1
Élevez à la puissance .
Étape 8.2.1.2
Multipliez par .
Étape 8.2.1.3
Multipliez par .
Étape 8.2.2
Additionnez et .
Étape 8.2.3
La réponse finale est .
Étape 8.3
Sur , la dérivée seconde est . Comme elle est négative, la dérivée seconde est décroissante sur l’intervalle
Diminue sur depuis
Diminue sur depuis
Étape 9
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Étape 10