Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Différenciez.
Étape 1.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2
Évaluez .
Étape 1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.3
Multipliez par .
Étape 1.1.3
Différenciez en utilisant la règle de la constante.
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Additionnez et .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Ajoutez aux deux côtés de l’équation.
Étape 2.3
Divisez chaque terme dans par et simplifiez.
Étape 2.3.1
Divisez chaque terme dans par .
Étape 2.3.2
Simplifiez le côté gauche.
Étape 2.3.2.1
Annulez le facteur commun de .
Étape 2.3.2.1.1
Annulez le facteur commun.
Étape 2.3.2.1.2
Divisez par .
Étape 2.3.3
Simplifiez le côté droit.
Étape 2.3.3.1
Divisez par .
Étape 2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.5
Simplifiez .
Étape 2.5.1
Réécrivez comme .
Étape 2.5.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.6
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.6.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.6.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.6.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3
Les valeurs qui rendent la dérivée égale à sont .
Étape 4
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée ou indéfinie.
Étape 5
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Étape 5.2.1
Simplifiez chaque terme.
Étape 5.2.1.1
Élevez à la puissance .
Étape 5.2.1.2
Multipliez par .
Étape 5.2.2
Soustrayez de .
Étape 5.2.3
La réponse finale est .
Étape 5.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Simplifiez chaque terme.
Étape 6.2.1.1
L’élévation de à toute puissance positive produit .
Étape 6.2.1.2
Multipliez par .
Étape 6.2.2
Soustrayez de .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 7
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Étape 7.2.1
Simplifiez chaque terme.
Étape 7.2.1.1
Multipliez par en additionnant les exposants.
Étape 7.2.1.1.1
Multipliez par .
Étape 7.2.1.1.1.1
Élevez à la puissance .
Étape 7.2.1.1.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 7.2.1.1.2
Additionnez et .
Étape 7.2.1.2
Élevez à la puissance .
Étape 7.2.2
Soustrayez de .
Étape 7.2.3
La réponse finale est .
Étape 7.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 8
Indiquez les intervalles sur lesquels la fonction est croissante et décroissante.
Augmente sur :
Diminue sur :
Étape 9