Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Définissez en fonction de .
Étape 2
Étape 2.1
Différenciez.
Étape 2.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2
Évaluez .
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.3
Multipliez par .
Étape 3
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Divisez chaque terme dans par et simplifiez.
Étape 3.2.1
Divisez chaque terme dans par .
Étape 3.2.2
Simplifiez le côté gauche.
Étape 3.2.2.1
Annulez le facteur commun de .
Étape 3.2.2.1.1
Annulez le facteur commun.
Étape 3.2.2.1.2
Divisez par .
Étape 3.2.3
Simplifiez le côté droit.
Étape 3.2.3.1
Placez le signe moins devant la fraction.
Étape 4
Étape 4.1
Remplacez la variable par dans l’expression.
Étape 4.2
Simplifiez le résultat.
Étape 4.2.1
Simplifiez chaque terme.
Étape 4.2.1.1
Utilisez la règle de puissance pour distribuer l’exposant.
Étape 4.2.1.1.1
Appliquez la règle de produit à .
Étape 4.2.1.1.2
Appliquez la règle de produit à .
Étape 4.2.1.2
Élevez à la puissance .
Étape 4.2.1.3
Multipliez par .
Étape 4.2.1.4
Élevez à la puissance .
Étape 4.2.1.5
Élevez à la puissance .
Étape 4.2.1.6
Multipliez .
Étape 4.2.1.6.1
Multipliez par .
Étape 4.2.1.6.2
Associez et .
Étape 4.2.1.6.3
Multipliez par .
Étape 4.2.1.7
Placez le signe moins devant la fraction.
Étape 4.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.2.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 4.2.3.1
Multipliez par .
Étape 4.2.3.2
Multipliez par .
Étape 4.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.2.5
Simplifiez le numérateur.
Étape 4.2.5.1
Multipliez par .
Étape 4.2.5.2
Soustrayez de .
Étape 4.2.6
Placez le signe moins devant la fraction.
Étape 4.2.7
La réponse finale est .
Étape 5
La droite tangente horizontale sur la fonction est .
Étape 6