Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une fonction.
Étape 2
Étape 2.1
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 2.2.3
Remplacez toutes les occurrences de par .
Étape 2.3
Différenciez.
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.3
Simplifiez l’expression.
Étape 2.3.3.1
Multipliez par .
Étape 2.3.3.2
Déplacez à gauche de .
Étape 2.3.3.3
Réécrivez comme .
Étape 2.3.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.5
Multipliez par .
Étape 2.4
Simplifiez
Étape 2.4.1
Remettez les termes dans l’ordre.
Étape 2.4.2
Remettez les facteurs dans l’ordre dans .
Étape 3
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Évaluez .
Étape 3.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.2
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 3.2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 3.2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.3.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 3.2.3.3
Remplacez toutes les occurrences de par .
Étape 3.2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.5
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.2.6
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.2.7
Multipliez par .
Étape 3.2.8
Déplacez à gauche de .
Étape 3.2.9
Réécrivez comme .
Étape 3.2.10
Multipliez par .
Étape 3.3
Évaluez .
Étape 3.3.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 3.3.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.3.1.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 3.3.1.3
Remplacez toutes les occurrences de par .
Étape 3.3.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.3.4
Multipliez par .
Étape 3.3.5
Déplacez à gauche de .
Étape 3.3.6
Réécrivez comme .
Étape 3.4
Simplifiez
Étape 3.4.1
Appliquez la propriété distributive.
Étape 3.4.2
Associez des termes.
Étape 3.4.2.1
Multipliez par .
Étape 3.4.2.2
Multipliez par .
Étape 3.4.2.3
Soustrayez de .
Étape 3.4.3
Remettez les termes dans l’ordre.
Étape 3.4.4
Remettez les facteurs dans l’ordre dans .
Étape 4
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 5
Étape 5.1
Déterminez la dérivée première.
Étape 5.1.1
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 5.1.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 5.1.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 5.1.2.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 5.1.2.3
Remplacez toutes les occurrences de par .
Étape 5.1.3
Différenciez.
Étape 5.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 5.1.3.3
Simplifiez l’expression.
Étape 5.1.3.3.1
Multipliez par .
Étape 5.1.3.3.2
Déplacez à gauche de .
Étape 5.1.3.3.3
Réécrivez comme .
Étape 5.1.3.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 5.1.3.5
Multipliez par .
Étape 5.1.4
Simplifiez
Étape 5.1.4.1
Remettez les termes dans l’ordre.
Étape 5.1.4.2
Remettez les facteurs dans l’ordre dans .
Étape 5.2
La dérivée première de par rapport à est .
Étape 6
Étape 6.1
Définissez la dérivée première égale à .
Étape 6.2
Factorisez à partir de .
Étape 6.2.1
Factorisez à partir de .
Étape 6.2.2
Multipliez par .
Étape 6.2.3
Factorisez à partir de .
Étape 6.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 6.4
Définissez égal à et résolvez .
Étape 6.4.1
Définissez égal à .
Étape 6.4.2
Résolvez pour .
Étape 6.4.2.1
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 6.4.2.2
L’équation ne peut pas être résolue car est indéfini.
Indéfini
Étape 6.4.2.3
Il n’y a pas de solution pour
Aucune solution
Aucune solution
Aucune solution
Étape 6.5
Définissez égal à et résolvez .
Étape 6.5.1
Définissez égal à .
Étape 6.5.2
Résolvez pour .
Étape 6.5.2.1
Soustrayez des deux côtés de l’équation.
Étape 6.5.2.2
Divisez chaque terme dans par et simplifiez.
Étape 6.5.2.2.1
Divisez chaque terme dans par .
Étape 6.5.2.2.2
Simplifiez le côté gauche.
Étape 6.5.2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 6.5.2.2.2.2
Divisez par .
Étape 6.5.2.2.3
Simplifiez le côté droit.
Étape 6.5.2.2.3.1
Divisez par .
Étape 6.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 7
Étape 7.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 8
Points critiques à évaluer.
Étape 9
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 10
Étape 10.1
Simplifiez chaque terme.
Étape 10.1.1
Multipliez par .
Étape 10.1.2
Multipliez par .
Étape 10.1.3
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 10.1.4
Multipliez par .
Étape 10.1.5
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 10.1.6
Associez et .
Étape 10.1.7
Placez le signe moins devant la fraction.
Étape 10.2
Associez les fractions.
Étape 10.2.1
Associez les numérateurs sur le dénominateur commun.
Étape 10.2.2
Simplifiez l’expression.
Étape 10.2.2.1
Soustrayez de .
Étape 10.2.2.2
Placez le signe moins devant la fraction.
Étape 11
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 12
Étape 12.1
Remplacez la variable par dans l’expression.
Étape 12.2
Simplifiez le résultat.
Étape 12.2.1
Multipliez par .
Étape 12.2.2
Multipliez par .
Étape 12.2.3
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 12.2.4
La réponse finale est .
Étape 13
Ce sont les extrema locaux pour .
est un maximum local
Étape 14