Calcul infinitésimal Exemples

Encontre a Derivada - d/dx y=sin( racine cubique de x)+ racine cubique de sin(5x)
Étape 1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Utilisez pour réécrire comme .
Étape 2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.2
La dérivée de par rapport à est .
Étape 2.2.3
Remplacez toutes les occurrences de par .
Étape 2.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.4
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.5
Associez et .
Étape 2.6
Associez les numérateurs sur le dénominateur commun.
Étape 2.7
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1
Multipliez par .
Étape 2.7.2
Soustrayez de .
Étape 2.8
Placez le signe moins devant la fraction.
Étape 2.9
Associez et .
Étape 2.10
Associez et .
Étape 2.11
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Utilisez pour réécrire comme .
Étape 3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.3
Remplacez toutes les occurrences de par .
Étape 3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.3.2
La dérivée de par rapport à est .
Étape 3.3.3
Remplacez toutes les occurrences de par .
Étape 3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.6
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.7
Associez et .
Étape 3.8
Associez les numérateurs sur le dénominateur commun.
Étape 3.9
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.9.1
Multipliez par .
Étape 3.9.2
Soustrayez de .
Étape 3.10
Placez le signe moins devant la fraction.
Étape 3.11
Multipliez par .
Étape 3.12
Déplacez à gauche de .
Étape 3.13
Associez et .
Étape 3.14
Associez et .
Étape 3.15
Associez et .
Étape 3.16
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .