Calcul infinitésimal Exemples

Encontre dy/dx (11x+3y)^(1/3)=x^2
Étape 1
Différenciez les deux côtés de l’équation.
Étape 2
Différenciez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.3
Remplacez toutes les occurrences de par .
Étape 2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.3
Associez et .
Étape 2.4
Associez les numérateurs sur le dénominateur commun.
Étape 2.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Multipliez par .
Étape 2.5.2
Soustrayez de .
Étape 2.6
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1
Placez le signe moins devant la fraction.
Étape 2.6.2
Associez et .
Étape 2.6.3
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 2.7
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.8
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.9
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.10
Multipliez par .
Étape 2.11
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.12
Réécrivez comme .
Étape 2.13
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.13.1
Réorganisez les facteurs de .
Étape 2.13.2
Multipliez par .
Étape 3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Multipliez les deux côtés par .
Étape 5.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 5.2.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1.2.1
Annulez le facteur commun.
Étape 5.2.1.1.2.2
Réécrivez l’expression.
Étape 5.2.1.1.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1.3.1
Annulez le facteur commun.
Étape 5.2.1.1.3.2
Réécrivez l’expression.
Étape 5.2.1.1.4
Remettez dans l’ordre et .
Étape 5.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 5.2.2.1.2
Multipliez par .
Étape 5.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Soustrayez des deux côtés de l’équation.
Étape 5.3.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1
Divisez chaque terme dans par .
Étape 5.3.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.2.1.1
Annulez le facteur commun.
Étape 5.3.2.2.1.2
Divisez par .
Étape 5.3.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.3.1.1
Factorisez à partir de .
Étape 5.3.2.3.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.3.1.2.1
Factorisez à partir de .
Étape 5.3.2.3.1.2.2
Annulez le facteur commun.
Étape 5.3.2.3.1.2.3
Réécrivez l’expression.
Étape 5.3.2.3.1.2.4
Divisez par .
Étape 5.3.2.3.1.3
Placez le signe moins devant la fraction.
Étape 5.3.2.3.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.3.2.3.3
Associez et .
Étape 5.3.2.3.4
Associez les numérateurs sur le dénominateur commun.
Étape 5.3.2.3.5
Multipliez par .
Étape 6
Remplacez par.