Calcul infinitésimal Exemples

Évaluer l'intégrale intégrale de xarctan(x) par rapport à x
Étape 1
Intégrez par parties en utilisant la formule , où et .
Étape 2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Associez et .
Étape 2.2
Associez et .
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
Associez et .
Étape 5
Divisez par .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Définissez les polynômes à diviser. S’il n’y a pas de terme pour chaque exposant, insérez-en un avec une valeur de .
++++
Étape 5.2
Divisez le terme du plus haut degré dans le dividende par le terme du plus haut degré dans le diviseur .
++++
Étape 5.3
Multipliez le nouveau terme du quotient par le diviseur.
++++
+++
Étape 5.4
L’expression doit être soustraite du dividende, alors changez tous les signes dans
++++
---
Étape 5.5
Après avoir changé les signes, ajoutez le dernier dividende du polynôme multiplié pour déterminer le nouveau dividende.
++++
---
-
Étape 5.6
La réponse finale est le quotient plus le reste sur le diviseur.
Étape 6
Séparez l’intégrale unique en plusieurs intégrales.
Étape 7
Appliquez la règle de la constante.
Étape 8
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 9
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Remettez dans l’ordre et .
Étape 9.2
Réécrivez comme .
Étape 10
L’intégrale de par rapport à est .
Étape 11
Simplifiez
Étape 12
Remettez les termes dans l’ordre.