Calcul infinitésimal Exemples

Encontre dy/dx logarithme népérien de 9y=e^ysin(5x)
Étape 1
Différenciez les deux côtés de l’équation.
Étape 2
Différenciez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.1.2
La dérivée de par rapport à est .
Étape 2.1.3
Remplacez toutes les occurrences de par .
Étape 2.2
Différenciez en utilisant la règle multiple constante.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Associez et .
Étape 2.2.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.2.1
Annulez le facteur commun.
Étape 2.2.2.2.2
Réécrivez l’expression.
Étape 2.3
Réécrivez comme .
Étape 2.4
Associez et .
Étape 3
Différenciez le côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.2
La dérivée de par rapport à est .
Étape 3.2.3
Remplacez toutes les occurrences de par .
Étape 3.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3.3
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1
Multipliez par .
Étape 3.3.3.2
Déplacez à gauche de .
Étape 3.4
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.4.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 3.4.3
Remplacez toutes les occurrences de par .
Étape 3.5
Réécrivez comme .
Étape 3.6
Remettez les termes dans l’ordre.
Étape 4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Multipliez les deux côtés par .
Étape 5.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1.1
Annulez le facteur commun.
Étape 5.2.1.1.2
Réécrivez l’expression.
Étape 5.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1.1
Appliquez la propriété distributive.
Étape 5.2.2.1.2
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1.2.1
Remettez les facteurs dans l’ordre dans .
Étape 5.2.2.1.2.2
Remettez dans l’ordre et .
Étape 5.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Soustrayez des deux côtés de l’équation.
Étape 5.3.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1
Factorisez à partir de .
Étape 5.3.2.2
Factorisez à partir de .
Étape 5.3.2.3
Factorisez à partir de .
Étape 5.3.3
Réécrivez comme .
Étape 5.3.4
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.4.1
Divisez chaque terme dans par .
Étape 5.3.4.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.4.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.4.2.1.1
Annulez le facteur commun.
Étape 5.3.4.2.1.2
Divisez par .
Étape 6
Remplacez par.