Calcul infinitésimal Exemples

Trouver où il y a croissance et décroissance à l'aide des Dérivées f(x)=x^4-4x^3+10
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.3
Multipliez par .
Étape 1.1.3
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Additionnez et .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Factorisez à partir de .
Étape 2.2.2
Factorisez à partir de .
Étape 2.2.3
Factorisez à partir de .
Étape 2.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.4.2.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.2.1
Réécrivez comme .
Étape 2.4.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.4.2.2.3
Plus ou moins est .
Étape 2.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Ajoutez aux deux côtés de l’équation.
Étape 2.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Les valeurs qui rendent la dérivée égale à sont .
Étape 4
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée ou indéfinie.
Étape 5
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Élevez à la puissance .
Étape 5.2.1.2
Multipliez par .
Étape 5.2.1.3
Élevez à la puissance .
Étape 5.2.1.4
Multipliez par .
Étape 5.2.2
Soustrayez de .
Étape 5.2.3
La réponse finale est .
Étape 5.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 6
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1
Appliquez la règle de produit à .
Étape 6.2.1.2
Élevez à la puissance .
Étape 6.2.1.3
Élevez à la puissance .
Étape 6.2.1.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.4.1
Factorisez à partir de .
Étape 6.2.1.4.2
Annulez le facteur commun.
Étape 6.2.1.4.3
Réécrivez l’expression.
Étape 6.2.1.5
Appliquez la règle de produit à .
Étape 6.2.1.6
Élevez à la puissance .
Étape 6.2.1.7
Élevez à la puissance .
Étape 6.2.1.8
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.8.1
Factorisez à partir de .
Étape 6.2.1.8.2
Annulez le facteur commun.
Étape 6.2.1.8.3
Réécrivez l’expression.
Étape 6.2.1.9
Multipliez par .
Étape 6.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 6.2.3
Associez et .
Étape 6.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 6.2.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.5.1
Multipliez par .
Étape 6.2.5.2
Soustrayez de .
Étape 6.2.6
Placez le signe moins devant la fraction.
Étape 6.2.7
La réponse finale est .
Étape 6.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 7
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1.1
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1.1.1
Élevez à la puissance .
Étape 7.2.1.1.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 7.2.1.1.2
Additionnez et .
Étape 7.2.1.2
Élevez à la puissance .
Étape 7.2.1.3
Élevez à la puissance .
Étape 7.2.1.4
Multipliez par .
Étape 7.2.2
Soustrayez de .
Étape 7.2.3
La réponse finale est .
Étape 7.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 8
Indiquez les intervalles sur lesquels la fonction est croissante et décroissante.
Augmente sur :
Diminue sur :
Étape 9