Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une fonction.
Étape 2
Étape 2.1
Déterminez la dérivée première.
Étape 2.1.1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 2.1.2
Différenciez.
Étape 2.1.2.1
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.2.2
Déplacez à gauche de .
Étape 2.1.2.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.2.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.2.6
Simplifiez l’expression.
Étape 2.1.2.6.1
Additionnez et .
Étape 2.1.2.6.2
Multipliez par .
Étape 2.1.3
Élevez à la puissance .
Étape 2.1.4
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.5
Additionnez et .
Étape 2.1.6
Simplifiez
Étape 2.1.6.1
Appliquez la propriété distributive.
Étape 2.1.6.2
Appliquez la propriété distributive.
Étape 2.1.6.3
Simplifiez le numérateur.
Étape 2.1.6.3.1
Simplifiez chaque terme.
Étape 2.1.6.3.1.1
Multipliez par en additionnant les exposants.
Étape 2.1.6.3.1.1.1
Déplacez .
Étape 2.1.6.3.1.1.2
Multipliez par .
Étape 2.1.6.3.1.1.2.1
Élevez à la puissance .
Étape 2.1.6.3.1.1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.6.3.1.1.3
Additionnez et .
Étape 2.1.6.3.1.2
Multipliez par .
Étape 2.1.6.3.2
Associez les termes opposés dans .
Étape 2.1.6.3.2.1
Soustrayez de .
Étape 2.1.6.3.2.2
Additionnez et .
Étape 2.2
Déterminez la dérivée seconde.
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 2.2.3
Différenciez en utilisant la règle de puissance.
Étape 2.2.3.1
Multipliez les exposants dans .
Étape 2.2.3.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.3.1.2
Multipliez par .
Étape 2.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.3.3
Multipliez par .
Étape 2.2.4
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.2.4.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.4.3
Remplacez toutes les occurrences de par .
Étape 2.2.5
Simplifiez en factorisant.
Étape 2.2.5.1
Multipliez par .
Étape 2.2.5.2
Factorisez à partir de .
Étape 2.2.5.2.1
Factorisez à partir de .
Étape 2.2.5.2.2
Factorisez à partir de .
Étape 2.2.5.2.3
Factorisez à partir de .
Étape 2.2.6
Annulez les facteurs communs.
Étape 2.2.6.1
Factorisez à partir de .
Étape 2.2.6.2
Annulez le facteur commun.
Étape 2.2.6.3
Réécrivez l’expression.
Étape 2.2.7
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.8
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.9
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.10
Simplifiez l’expression.
Étape 2.2.10.1
Additionnez et .
Étape 2.2.10.2
Multipliez par .
Étape 2.2.11
Élevez à la puissance .
Étape 2.2.12
Élevez à la puissance .
Étape 2.2.13
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.14
Additionnez et .
Étape 2.2.15
Soustrayez de .
Étape 2.2.16
Associez et .
Étape 2.2.17
Simplifiez
Étape 2.2.17.1
Appliquez la propriété distributive.
Étape 2.2.17.2
Simplifiez chaque terme.
Étape 2.2.17.2.1
Multipliez par .
Étape 2.2.17.2.2
Multipliez par .
Étape 2.3
La dérivée seconde de par rapport à est .
Étape 3
Étape 3.1
Définissez la dérivée seconde égale à .
Étape 3.2
Définissez le numérateur égal à zéro.
Étape 3.3
Résolvez l’équation pour .
Étape 3.3.1
Soustrayez des deux côtés de l’équation.
Étape 3.3.2
Divisez chaque terme dans par et simplifiez.
Étape 3.3.2.1
Divisez chaque terme dans par .
Étape 3.3.2.2
Simplifiez le côté gauche.
Étape 3.3.2.2.1
Annulez le facteur commun de .
Étape 3.3.2.2.1.1
Annulez le facteur commun.
Étape 3.3.2.2.1.2
Divisez par .
Étape 3.3.2.3
Simplifiez le côté droit.
Étape 3.3.2.3.1
Divisez par .
Étape 3.3.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.3.4
Toute racine de est .
Étape 3.3.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.3.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.3.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.3.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4
Étape 4.1
Remplacez dans pour déterminer la valeur de .
Étape 4.1.1
Remplacez la variable par dans l’expression.
Étape 4.1.2
Simplifiez le résultat.
Étape 4.1.2.1
Un à n’importe quelle puissance est égal à un.
Étape 4.1.2.2
Simplifiez le dénominateur.
Étape 4.1.2.2.1
Un à n’importe quelle puissance est égal à un.
Étape 4.1.2.2.2
Additionnez et .
Étape 4.1.2.3
La réponse finale est .
Étape 4.2
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 4.3
Remplacez dans pour déterminer la valeur de .
Étape 4.3.1
Remplacez la variable par dans l’expression.
Étape 4.3.2
Simplifiez le résultat.
Étape 4.3.2.1
Élevez à la puissance .
Étape 4.3.2.2
Simplifiez le dénominateur.
Étape 4.3.2.2.1
Élevez à la puissance .
Étape 4.3.2.2.2
Additionnez et .
Étape 4.3.2.3
La réponse finale est .
Étape 4.4
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 4.5
Déterminez les points qui pourraient être des points d’inflexion.
Étape 5
Divisez en intervalles autour des points qui pourraient potentiellement être des points d’inflexion.
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Simplifiez le numérateur.
Étape 6.2.1.1
Élevez à la puissance .
Étape 6.2.1.2
Multipliez par .
Étape 6.2.1.3
Additionnez et .
Étape 6.2.2
Simplifiez le dénominateur.
Étape 6.2.2.1
Élevez à la puissance .
Étape 6.2.2.2
Additionnez et .
Étape 6.2.2.3
Élevez à la puissance .
Étape 6.2.3
Divisez par .
Étape 6.2.4
La réponse finale est .
Étape 6.3
Sur , la dérivée seconde est . Comme elle est négative, la dérivée seconde est décroissante sur l’intervalle
Diminue sur depuis
Diminue sur depuis
Étape 7
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Étape 7.2.1
Simplifiez le numérateur.
Étape 7.2.1.1
L’élévation de à toute puissance positive produit .
Étape 7.2.1.2
Multipliez par .
Étape 7.2.1.3
Additionnez et .
Étape 7.2.2
Simplifiez le dénominateur.
Étape 7.2.2.1
L’élévation de à toute puissance positive produit .
Étape 7.2.2.2
Additionnez et .
Étape 7.2.2.3
Élevez à la puissance .
Étape 7.2.3
Annulez le facteur commun à et .
Étape 7.2.3.1
Factorisez à partir de .
Étape 7.2.3.2
Annulez les facteurs communs.
Étape 7.2.3.2.1
Factorisez à partir de .
Étape 7.2.3.2.2
Annulez le facteur commun.
Étape 7.2.3.2.3
Réécrivez l’expression.
Étape 7.2.4
La réponse finale est .
Étape 7.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 8
Étape 8.1
Remplacez la variable par dans l’expression.
Étape 8.2
Simplifiez le résultat.
Étape 8.2.1
Simplifiez le numérateur.
Étape 8.2.1.1
Élevez à la puissance .
Étape 8.2.1.2
Multipliez par .
Étape 8.2.1.3
Additionnez et .
Étape 8.2.2
Simplifiez le dénominateur.
Étape 8.2.2.1
Élevez à la puissance .
Étape 8.2.2.2
Additionnez et .
Étape 8.2.2.3
Élevez à la puissance .
Étape 8.2.3
Divisez par .
Étape 8.2.4
La réponse finale est .
Étape 8.3
Sur , la dérivée seconde est . Comme elle est négative, la dérivée seconde est décroissante sur l’intervalle
Diminue sur depuis
Diminue sur depuis
Étape 9
Un point d’inflexion est un point sur une courbe sur lequel la concavité passe du signe plus au signe moins ou du signe moins au signe plus. Dans ce cas, les points d’inflexion sont .
Étape 10