Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Réécrivez comme .
Étape 1.1.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.1.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.3
Remplacez toutes les occurrences de par .
Étape 1.1.3
Différenciez.
Étape 1.1.3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.4
Simplifiez l’expression.
Étape 1.1.3.4.1
Additionnez et .
Étape 1.1.3.4.2
Multipliez par .
Étape 1.1.4
Simplifiez
Étape 1.1.4.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.1.4.2
Associez des termes.
Étape 1.1.4.2.1
Associez et .
Étape 1.1.4.2.2
Placez le signe moins devant la fraction.
Étape 1.1.4.2.3
Associez et .
Étape 1.1.4.2.4
Déplacez à gauche de .
Étape 1.2
Déterminez la dérivée seconde.
Étape 1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 1.2.3
Différenciez en utilisant la règle de puissance.
Étape 1.2.3.1
Multipliez les exposants dans .
Étape 1.2.3.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.2.3.1.2
Multipliez par .
Étape 1.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.3.3
Multipliez par .
Étape 1.2.4
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.2.4.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.4.3
Remplacez toutes les occurrences de par .
Étape 1.2.5
Simplifiez en factorisant.
Étape 1.2.5.1
Multipliez par .
Étape 1.2.5.2
Factorisez à partir de .
Étape 1.2.5.2.1
Factorisez à partir de .
Étape 1.2.5.2.2
Factorisez à partir de .
Étape 1.2.5.2.3
Factorisez à partir de .
Étape 1.2.6
Annulez les facteurs communs.
Étape 1.2.6.1
Factorisez à partir de .
Étape 1.2.6.2
Annulez le facteur commun.
Étape 1.2.6.3
Réécrivez l’expression.
Étape 1.2.7
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.8
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.9
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.10
Simplifiez l’expression.
Étape 1.2.10.1
Additionnez et .
Étape 1.2.10.2
Multipliez par .
Étape 1.2.11
Élevez à la puissance .
Étape 1.2.12
Élevez à la puissance .
Étape 1.2.13
Utilisez la règle de puissance pour associer des exposants.
Étape 1.2.14
Additionnez et .
Étape 1.2.15
Soustrayez de .
Étape 1.2.16
Associez et .
Étape 1.2.17
Placez le signe moins devant la fraction.
Étape 1.2.18
Simplifiez
Étape 1.2.18.1
Appliquez la propriété distributive.
Étape 1.2.18.2
Simplifiez chaque terme.
Étape 1.2.18.2.1
Multipliez par .
Étape 1.2.18.2.2
Multipliez par .
Étape 1.2.18.3
Factorisez à partir de .
Étape 1.2.18.3.1
Factorisez à partir de .
Étape 1.2.18.3.2
Factorisez à partir de .
Étape 1.2.18.3.3
Factorisez à partir de .
Étape 1.2.18.4
Factorisez à partir de .
Étape 1.2.18.5
Réécrivez comme .
Étape 1.2.18.6
Factorisez à partir de .
Étape 1.2.18.7
Réécrivez comme .
Étape 1.2.18.8
Placez le signe moins devant la fraction.
Étape 1.2.18.9
Multipliez par .
Étape 1.2.18.10
Multipliez par .
Étape 1.3
La dérivée seconde de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée seconde égale à .
Étape 2.2
Définissez le numérateur égal à zéro.
Étape 2.3
Résolvez l’équation pour .
Étape 2.3.1
Divisez chaque terme dans par et simplifiez.
Étape 2.3.1.1
Divisez chaque terme dans par .
Étape 2.3.1.2
Simplifiez le côté gauche.
Étape 2.3.1.2.1
Annulez le facteur commun de .
Étape 2.3.1.2.1.1
Annulez le facteur commun.
Étape 2.3.1.2.1.2
Divisez par .
Étape 2.3.1.3
Simplifiez le côté droit.
Étape 2.3.1.3.1
Divisez par .
Étape 2.3.2
Ajoutez aux deux côtés de l’équation.
Étape 2.3.3
Divisez chaque terme dans par et simplifiez.
Étape 2.3.3.1
Divisez chaque terme dans par .
Étape 2.3.3.2
Simplifiez le côté gauche.
Étape 2.3.3.2.1
Annulez le facteur commun de .
Étape 2.3.3.2.1.1
Annulez le facteur commun.
Étape 2.3.3.2.1.2
Divisez par .
Étape 2.3.4
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.3.5
Simplifiez .
Étape 2.3.5.1
Réécrivez comme .
Étape 2.3.5.2
Multipliez par .
Étape 2.3.5.3
Associez et simplifiez le dénominateur.
Étape 2.3.5.3.1
Multipliez par .
Étape 2.3.5.3.2
Élevez à la puissance .
Étape 2.3.5.3.3
Élevez à la puissance .
Étape 2.3.5.3.4
Utilisez la règle de puissance pour associer des exposants.
Étape 2.3.5.3.5
Additionnez et .
Étape 2.3.5.3.6
Réécrivez comme .
Étape 2.3.5.3.6.1
Utilisez pour réécrire comme .
Étape 2.3.5.3.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.3.5.3.6.3
Associez et .
Étape 2.3.5.3.6.4
Annulez le facteur commun de .
Étape 2.3.5.3.6.4.1
Annulez le facteur commun.
Étape 2.3.5.3.6.4.2
Réécrivez l’expression.
Étape 2.3.5.3.6.5
Évaluez l’exposant.
Étape 2.3.5.4
Simplifiez le numérateur.
Étape 2.3.5.4.1
Associez en utilisant la règle de produit pour les radicaux.
Étape 2.3.5.4.2
Multipliez par .
Étape 2.3.6
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.3.6.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.3.6.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.3.6.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3
Étape 3.1
Remplacez dans pour déterminer la valeur de .
Étape 3.1.1
Remplacez la variable par dans l’expression.
Étape 3.1.2
Simplifiez le résultat.
Étape 3.1.2.1
Simplifiez le dénominateur.
Étape 3.1.2.1.1
Appliquez la règle de produit à .
Étape 3.1.2.1.2
Réécrivez comme .
Étape 3.1.2.1.2.1
Utilisez pour réécrire comme .
Étape 3.1.2.1.2.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.1.2.1.2.3
Associez et .
Étape 3.1.2.1.2.4
Annulez le facteur commun de .
Étape 3.1.2.1.2.4.1
Annulez le facteur commun.
Étape 3.1.2.1.2.4.2
Réécrivez l’expression.
Étape 3.1.2.1.2.5
Évaluez l’exposant.
Étape 3.1.2.1.3
Élevez à la puissance .
Étape 3.1.2.1.4
Annulez le facteur commun à et .
Étape 3.1.2.1.4.1
Factorisez à partir de .
Étape 3.1.2.1.4.2
Annulez les facteurs communs.
Étape 3.1.2.1.4.2.1
Factorisez à partir de .
Étape 3.1.2.1.4.2.2
Annulez le facteur commun.
Étape 3.1.2.1.4.2.3
Réécrivez l’expression.
Étape 3.1.2.1.5
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.1.2.1.6
Associez et .
Étape 3.1.2.1.7
Associez les numérateurs sur le dénominateur commun.
Étape 3.1.2.1.8
Simplifiez le numérateur.
Étape 3.1.2.1.8.1
Multipliez par .
Étape 3.1.2.1.8.2
Additionnez et .
Étape 3.1.2.2
Multipliez le numérateur par la réciproque du dénominateur.
Étape 3.1.2.3
Multipliez par .
Étape 3.1.2.4
La réponse finale est .
Étape 3.2
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 3.3
Remplacez dans pour déterminer la valeur de .
Étape 3.3.1
Remplacez la variable par dans l’expression.
Étape 3.3.2
Simplifiez le résultat.
Étape 3.3.2.1
Simplifiez le dénominateur.
Étape 3.3.2.1.1
Utilisez la règle de puissance pour distribuer l’exposant.
Étape 3.3.2.1.1.1
Appliquez la règle de produit à .
Étape 3.3.2.1.1.2
Appliquez la règle de produit à .
Étape 3.3.2.1.2
Élevez à la puissance .
Étape 3.3.2.1.3
Multipliez par .
Étape 3.3.2.1.4
Réécrivez comme .
Étape 3.3.2.1.4.1
Utilisez pour réécrire comme .
Étape 3.3.2.1.4.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.3.2.1.4.3
Associez et .
Étape 3.3.2.1.4.4
Annulez le facteur commun de .
Étape 3.3.2.1.4.4.1
Annulez le facteur commun.
Étape 3.3.2.1.4.4.2
Réécrivez l’expression.
Étape 3.3.2.1.4.5
Évaluez l’exposant.
Étape 3.3.2.1.5
Élevez à la puissance .
Étape 3.3.2.1.6
Annulez le facteur commun à et .
Étape 3.3.2.1.6.1
Factorisez à partir de .
Étape 3.3.2.1.6.2
Annulez les facteurs communs.
Étape 3.3.2.1.6.2.1
Factorisez à partir de .
Étape 3.3.2.1.6.2.2
Annulez le facteur commun.
Étape 3.3.2.1.6.2.3
Réécrivez l’expression.
Étape 3.3.2.1.7
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.3.2.1.8
Associez et .
Étape 3.3.2.1.9
Associez les numérateurs sur le dénominateur commun.
Étape 3.3.2.1.10
Simplifiez le numérateur.
Étape 3.3.2.1.10.1
Multipliez par .
Étape 3.3.2.1.10.2
Additionnez et .
Étape 3.3.2.2
Multipliez le numérateur par la réciproque du dénominateur.
Étape 3.3.2.3
Multipliez par .
Étape 3.3.2.4
La réponse finale est .
Étape 3.4
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 3.5
Déterminez les points qui pourraient être des points d’inflexion.
Étape 4
Divisez en intervalles autour des points qui pourraient potentiellement être des points d’inflexion.
Étape 5
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Étape 5.2.1
Simplifiez le numérateur.
Étape 5.2.1.1
Élevez à la puissance .
Étape 5.2.1.2
Multipliez par .
Étape 5.2.1.3
Soustrayez de .
Étape 5.2.2
Simplifiez le dénominateur.
Étape 5.2.2.1
Élevez à la puissance .
Étape 5.2.2.2
Additionnez et .
Étape 5.2.2.3
Élevez à la puissance .
Étape 5.2.3
Simplifiez l’expression.
Étape 5.2.3.1
Multipliez par .
Étape 5.2.3.2
Divisez par .
Étape 5.2.4
La réponse finale est .
Étape 5.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Simplifiez le numérateur.
Étape 6.2.1.1
L’élévation de à toute puissance positive produit .
Étape 6.2.1.2
Multipliez par .
Étape 6.2.1.3
Soustrayez de .
Étape 6.2.2
Simplifiez le dénominateur.
Étape 6.2.2.1
L’élévation de à toute puissance positive produit .
Étape 6.2.2.2
Additionnez et .
Étape 6.2.2.3
Élevez à la puissance .
Étape 6.2.3
Réduisez l’expression en annulant les facteurs communs.
Étape 6.2.3.1
Multipliez par .
Étape 6.2.3.2
Annulez le facteur commun à et .
Étape 6.2.3.2.1
Factorisez à partir de .
Étape 6.2.3.2.2
Annulez les facteurs communs.
Étape 6.2.3.2.2.1
Factorisez à partir de .
Étape 6.2.3.2.2.2
Annulez le facteur commun.
Étape 6.2.3.2.2.3
Réécrivez l’expression.
Étape 6.2.3.3
Placez le signe moins devant la fraction.
Étape 6.2.4
La réponse finale est .
Étape 6.3
Sur , la dérivée seconde est . Comme elle est négative, la dérivée seconde est décroissante sur l’intervalle
Diminue sur depuis
Diminue sur depuis
Étape 7
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Étape 7.2.1
Simplifiez le numérateur.
Étape 7.2.1.1
Élevez à la puissance .
Étape 7.2.1.2
Multipliez par .
Étape 7.2.1.3
Soustrayez de .
Étape 7.2.2
Simplifiez le dénominateur.
Étape 7.2.2.1
Élevez à la puissance .
Étape 7.2.2.2
Additionnez et .
Étape 7.2.2.3
Élevez à la puissance .
Étape 7.2.3
Simplifiez l’expression.
Étape 7.2.3.1
Multipliez par .
Étape 7.2.3.2
Divisez par .
Étape 7.2.4
La réponse finale est .
Étape 7.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 8
Un point d’inflexion est un point sur une courbe sur lequel la concavité passe du signe plus au signe moins ou du signe moins au signe plus. Dans ce cas, les points d’inflexion sont .
Étape 9