Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Décomposez la fraction et multipliez par le dénominateur commun.
Étape 1.1.1
Factorisez la fraction.
Étape 1.1.1.1
Réécrivez comme .
Étape 1.1.1.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 1.1.1.3
Factorisez à partir de .
Étape 1.1.1.3.1
Factorisez à partir de .
Étape 1.1.1.3.2
Élevez à la puissance .
Étape 1.1.1.3.3
Factorisez à partir de .
Étape 1.1.1.3.4
Factorisez à partir de .
Étape 1.1.2
Pour chaque facteur dans le dénominateur, créez une nouvelle fraction en utilisant le facteur comme dénominateur et une valeur inconnue comme numérateur. Comme le facteur est du deuxième degré, les termes sont requis dans le numérateur. Le nombre de termes requis dans le numérateur est toujours égal au degré du facteur dans le dénominateur.
Étape 1.1.3
Multipliez chaque fraction dans l’équation par le dénominateur de l’expression d’origine. Dans ce cas, le dénominateur est .
Étape 1.1.4
Réduisez l’expression en annulant les facteurs communs.
Étape 1.1.4.1
Annulez le facteur commun de .
Étape 1.1.4.1.1
Annulez le facteur commun.
Étape 1.1.4.1.2
Réécrivez l’expression.
Étape 1.1.4.2
Annulez le facteur commun de .
Étape 1.1.4.2.1
Annulez le facteur commun.
Étape 1.1.4.2.2
Divisez par .
Étape 1.1.5
Développez à l’aide de la méthode FOIL.
Étape 1.1.5.1
Appliquez la propriété distributive.
Étape 1.1.5.2
Appliquez la propriété distributive.
Étape 1.1.5.3
Appliquez la propriété distributive.
Étape 1.1.6
Simplifiez et associez les termes similaires.
Étape 1.1.6.1
Simplifiez chaque terme.
Étape 1.1.6.1.1
Multipliez par .
Étape 1.1.6.1.2
Déplacez à gauche de .
Étape 1.1.6.1.3
Réécrivez comme .
Étape 1.1.6.1.4
Multipliez par .
Étape 1.1.6.1.5
Multipliez par .
Étape 1.1.6.2
Additionnez et .
Étape 1.1.6.3
Additionnez et .
Étape 1.1.7
Simplifiez chaque terme.
Étape 1.1.7.1
Annulez le facteur commun de .
Étape 1.1.7.1.1
Annulez le facteur commun.
Étape 1.1.7.1.2
Divisez par .
Étape 1.1.7.2
Appliquez la propriété distributive.
Étape 1.1.7.3
Multipliez par .
Étape 1.1.7.4
Annulez le facteur commun de .
Étape 1.1.7.4.1
Annulez le facteur commun.
Étape 1.1.7.4.2
Divisez par .
Étape 1.1.7.5
Appliquez la propriété distributive.
Étape 1.1.7.6
Multipliez par en additionnant les exposants.
Étape 1.1.7.6.1
Déplacez .
Étape 1.1.7.6.2
Multipliez par .
Étape 1.1.8
Déplacez .
Étape 1.2
Créez des équations pour les variables de fractions partielles et utilisez-les pour définir un système d’équations.
Étape 1.2.1
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 1.2.2
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 1.2.3
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients des termes qui ne contiennent pas . Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 1.2.4
Définissez le système d’équations pour déterminer les coefficients des fractions partielles.
Étape 1.3
Résolvez le système d’équations.
Étape 1.3.1
Réécrivez l’équation comme .
Étape 1.3.2
Réécrivez l’équation comme .
Étape 1.3.3
Remplacez toutes les occurrences de par dans chaque équation.
Étape 1.3.3.1
Remplacez toutes les occurrences de dans par .
Étape 1.3.3.2
Simplifiez le côté droit.
Étape 1.3.3.2.1
Supprimez les parenthèses.
Étape 1.3.4
Résolvez dans .
Étape 1.3.4.1
Réécrivez l’équation comme .
Étape 1.3.4.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 1.3.4.2.1
Ajoutez aux deux côtés de l’équation.
Étape 1.3.4.2.2
Additionnez et .
Étape 1.3.5
Résolvez le système d’équations.
Étape 1.3.6
Indiquez toutes les solutions.
Étape 1.4
Remplacez chacun des coefficients de fractions partielles dans par les valeurs trouvées pour , et .
Étape 1.5
Simplifiez
Étape 1.5.1
Supprimez les parenthèses.
Étape 1.5.2
Additionnez et .
Étape 1.5.3
Placez le signe moins devant la fraction.
Étape 2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
L’intégrale de par rapport à est .
Étape 5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6
Étape 6.1
Laissez . Déterminez .
Étape 6.1.1
Différenciez .
Étape 6.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 6.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 6.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 6.1.5
Additionnez et .
Étape 6.2
Réécrivez le problème en utilisant et .
Étape 7
Étape 7.1
Multipliez par .
Étape 7.2
Déplacez à gauche de .
Étape 8
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 9
Étape 9.1
Associez et .
Étape 9.2
Annulez le facteur commun de .
Étape 9.2.1
Annulez le facteur commun.
Étape 9.2.2
Réécrivez l’expression.
Étape 9.3
Multipliez par .
Étape 10
L’intégrale de par rapport à est .
Étape 11
Simplifiez
Étape 12
Remplacez toutes les occurrences de par .